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Extended Abstract

A vertex-distinguishing coloring of a graph G consists in an edge or a vertex coloring (not
necessarily proper) of G leading to a labeling of the vertices of G, where all the vertices are
distinguished by their labels.

There are several possible rules for both the coloring and the labeling. For instance, in a
set irregular edge coloring [5], the label of a vertex is the union of the colors of its adjacent
edges. Other rules for the labeling of a vertex from an edge coloring have been studied: the
multiset of its adjacent colors [1], their sum [3], product or difference [6] (for those three rules,
the colors must be integers)... The variant where the edge coloring is proper has also been
studied [2]. If the vertices are colored, we can define the identifying coloring [4], in which
each vertex is assigned a label corresponding to the union of its closed neighbourhood colors.

Motivated by a generalization of the set irregular edge coloring problem, we introduce a
variant of the problem: to each edge is associated a nonempty set of colors. Given a simple
graph G, a k-coloring of G is a function f : E(G)→ 2{1...,k} where every edge is labeled using
a non-empty subset of {1, . . . , k}. For any k-coloring f of G, we define, for every vertex u,
the set idf (u) as follows:

idf (u) =
⋃

v s.t. uv∈E
f(uv).

If the context is clear, we will simply write id(u) for idf (u). A k-coloring f is union vertex-
distinguishing if, for all distinct u, v in V (G), id(u) 6= id(v). Figure 1 shows an example of
such a 4-coloring. For a given graph G, we denote by χ∪(G) the smallest integer such that
there exists a union vertex-distinguishing coloring of G. The union vertex-distinguishing edge
coloring being defined only on graphs without any connected component of size 1 or 2, we
will only consider such graphs. It is easy to notice that such graphs admit a valid union
vertex-distinguishing edge coloring.
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Figure 1: An example of a vertex-distinguishing edge coloring.

We have both lower and upper bounds for χ∪:

Proposition 1. For any graph G with no connected component of size 1 or 2, we have the
following inequalities:

dlog2(|V (G)|+ 1)e ≤ χ∪(G) ≤ min(χS(G), χid(G))



where χS(G) is the set irregular edge coloring number of G, and χid(G) is the identifying
number of G.

The lower bound comes from the fact that, from k colors, one can have at most 2k − 1
labels, since labels are nonempty subsets of {1, . . . , k}. The upper bound comes from the
relationship between our parameter χ∪ and other vertex-distinguishing parameters: a set
irregular edge coloring is a union vertex-distinguishing edge coloring where only singletons
are allowed, and any identifying coloring induces a valid union vertex-distinguishing edge
coloring.

We say that a graph G is optimally colored if χ∪(G) = dlog2(|V |+ 1)e. For example, the
graph shown on Figure 1 is optimally colored, since it has 8 vertices and the coloring uses
4 colors. We will see that some classes of graphs can be optimally colored, and that any
graph with no connected component of size 1 or 2 admits a union vertex-distinguighing edge
coloring with at most 2 more colors than the optimal bound. This is the main result of our
paper.

Theorem 2. For any graph G, we have the following property:

dlog2(|V (G)|+ 1)e ≤ χ∪(G) ≤ dlog2(|V (G)|+ 1)e+ 2

Sketch of proof. For any graph G, if H is a graph such that V (H) = V (G) and E(H) ⊆ E(G),
then we call H an edge− subgraph of G.

Our proof follows the following schema:

1. We prove that for any edge-subgraph H of a graph G, we have χ∪(G) ≤ χ∪(H) + 1.

2. We then prove that any graph G admits an edge-subgraph isomorphic to a disjoint
union of stars subdivided at most once.

3. We now prove that stars subdivided at most once can be optimally colored.

4. Finally, we prove that a disjoint union of graphs that can be separately optimally colored
can be colored together using at most the optimal number of colors plus one.

Thus, Theorem 2 is proved.
We will present sketches of proofs for each item:
The first point is easily proved: if we assign to each edge of E(G)\E(H) a color that has not

been used in the coloring of H, then the resulting coloring will be union vertex-distinguishing.
The second point is proved by contradiction. We study the smallest graph G which

does not admit a disjoint union of stars subdivided at most once as an edge-subgraph. By
minimality, if we take u a vertex of maximum degree, then for every neighbour v of u, the
component of v in G \ (u, v) is reduced to a single vertex or an edge. This implies that the
component of v in G\(u, v), as well as in G, is a star subdivided at most once, a contradiction.

The third point is proved by finding a valid union vertex-distinguishing edge coloring of
any star subdivided at most once. There are two cases according to there are 2k − 1 vertices
of degree 2 in the neighbourhood of the central vertex or not. In both cases, such a coloring
can be constructed.

The fourth point is a generalization of a smaller result: let H1 and H2 be two graphs
such that 2k ≤ |V (H1)|, |V (H2)| ≤ 2k+1 − 1. If both H1 and H2 can be optimally colored,
then their disjoint union H1 ∪H2 can be optimally colored. Indeed, we only need to add the
color k+1 to each edge of H2. The resulting coloring will be union vertex-distinguishing and
optimal for H1 ∪H2.

Thus, if we have a family of graphs that can be separately optimally colored, we begin by
grouping the graphs Hi, Hj verifying 2k ≤ |V (Hi)|, |V (Hj)| ≤ 2k+1 − 1 for a certain k until
no graph satisfies this anymore. We then use induction to join the remaining graphs, again
by using a color that was not used in any of the graphs that we join. The plus one comes
from the fact that if we have two graphs Hi and Hj such that 2ki ≤ |V (Hi)| ≤ 2ki+1 − 1 <



2kj ≤ |V (Hj)| ≤ 2kj+1 − 1 and verify |V (Hi)| + |V (Hj)| < 2kj+1, then we use kj + 1 colors
and thus the coloring is not optimal.

As seen in the proof of Theorem 2, we actually "lose" a value on the bound by proving
the second point. We thus conjecture that the upper bound can be improved:

Conjecture 3. For any graph G with no connected component of size 1 or 2, we have:

dlog2(|V (G)|+ 1)e ≤ χ∪(G) ≤ dlog2(|V (G)|+ 1)e+ 1

There are several possibilities to try and prove or disprove this conjecture: a first idea
would be to study the exact value of χ∪ for trees or stars subdivided at most once. If graphs
from one of these two classes are optimally colorable, then the conjecture is true.

In addition, we proved that paths, cycles and complete binary trees can be optimally
colored, which validates the above conjecture for these classes and all the graphs that contain
a graph of one of these classes as an edge subgraph (e.g. Hamiltonian graphs).

Theorem 4. We have χ∪(G) = dlog2(|V (G)|+1)e if G belongs to one of the following classes
of graphs:

1. Paths of length greater than 2;

2. Cycles of length greater than 3 and different from 7;

3. Complete binary trees.

We have χ∪(G) = dlog2(|V (G)|+ 1)e+ 1 for the following classes of graphs:

4. Cycles of length 3 and 7;

5. The complete graphs of order 2k − 1.

Sketch of proof. For the first point, we actually prove a slightly larger statement: for n ≥ 3,
there exists an optimal union vertex-distinguishing m-coloring for a path Pn = (u1, . . . , un)
such that id(u1) = {1}, id(un) = {m} and the only vertex that satisfies id(uj) = {1,m} is
un−1. This is proved by induction on n. If n = 2k + ` where 0 ≤ ` ≤ 2k − 1, we use the
optimal colorings of P2k−1 and P` to create an optimal coloring of Pn.

For the second point, we have two cases: either n = 2k − 1 or not. In the latter case, we
connect the first and last vertices of the path Pn to create an optimal coloring of Cn. The
former case is proved by induction on k.

For the third point, we use induction on the height of the complete binary tree.
For the fourth point, it is easily seen that both C3 and C7 can not be optimally colored, but

using respectively 3 and 4 colors a valid vertex-distinguishing edge coloring can be obtained.
The fifth point is proven by contradiction: if complete graphs of order 2k − 1 could be

optimally colored, then two vertices u and v would be identified each by a different singleton
{i} and {j}. This is contradictory, since the edge uv would have to be colored with both the
singleton {i} and the singleton {j}.
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