
Computability and Complexity

Exam

Turing machines and decidability

Guidelines

This is an oral exam. You have 2 hours to prepare exercises, and then 45 minutes to explain your answers.
You have to solve 1 exercise per part, so in total you will have to prepare 6 exercises.

1 Turing machines

Exercise 1 : Logic 101 .
Give an implementation-level description of a Turing machine that, from an input #w1#w2# (where w1

and w2 are strings over {0, 1}, with |w1| = |w2| > 0), compute one of the following functions:

1. The logical AND (x AND y = 1 if and only if x = y = 1);

2. The logical OR (x OR y = 0 if and only if x = y = 0);

3. The logical XOR (x XOR y = 1 if and only if x 6= y).

Those functions are bit-by-bit operations. So, for instance, 111 AND 101 = 101; 000 OR 101 = 101;
111 XOR 101 = 010.
Answer:
In all cases, we write the output on a second tape.

1. Here, the idea is that we write a 1 only if we have two 1’s.

MAND := On input #w1#w2#:

1. Go to the first character after #. If it is a 0, go to step 2; if it is a 1, go to step 3 ; if it is a
blank, accept.

2. Write 0 and move Right on the second tape. On the first tape, replace the character by a
#. Move Right to the first character after #. Replace it by a #. Move the head back to the
leftmost cell, and go to step 1.

3. Replace the character by a #. Move Right to the first character after #. If it is a 0, write 0
and move Right on the second tape; otherwise, write 1 and move Right on the second tape. On
the first tape, replace the character by a #. Move the head back to the leftmost cell, and go to
step 1.

2. Here, the idea is that we write a 0 only if we have two 0’s.

MOR := On input #w1#w2#:

1. Go to the first character after #. If it is a 1, go to step 2; if it is a 0, go to step 3 ; if it is a
blank, accept.

2. Write 1 and move Right on the second tape. On the first tape, replace the character by a
#. Move Right to the first character after #. Replace it by a #. Move the head back to the
leftmost cell, and go to step 1.

1

3. Replace the character by a #. Move Right to the first character after #. If it is a 0, write 0
and move Right on the second tape; otherwise, write 1 and move Right on the second tape. On
the first tape, replace the character by a #. Move the head back to the leftmost cell, and go to
step 1.

3. Here we write a 1 only if the two digits are different.

MXOR := On input #w1#w2#:

1. Go to the first character after #. If it is a 0, go to step 2; if it is a 1, go to step 3 ; if it is a
blank, accept.

2. Replace the character by a #. Move Right to the first character after #. If it is a 0, write 0
and move Right on the second tape; otherwise, write 1 and move Right on the second tape. On
the first tape, replace the character by a #. Move the head back to the leftmost cell, and go to
step 1.

3. Replace the character by a #. Move Right to the first character after #. If it is a 1, write 0
and move Right on the second tape; otherwise, write 1 and move Right on the second tape. On
the first tape, replace the character by a #. Move the head back to the leftmost cell, and go to
step 1.

Exercise 2 : ABC is easy as 123 .
For a word w and a character `, denote by |w|` the number of `’s in w.
Decide L = {w ∈ {a, b, c}∗ | |w|a > |w|b > |w|c}.
Answer:
We use a Turing machine with four tapes. The idea is to count the number of a’s (resp. b’s, c’s) on the
second (resp. third, fourth) tape. We then compare the tapes and accept if and only if the word verifies
the condition.

2 Computation models

Exercise 3 : Without Left .
What class of languages is recognized by a Turing machine where the head can write and then move
Right or stay Still, but not move Left? Explain your answer.
Answer:
It is easy to see that such Turing machines can only read their input (by moving Right) or follow ε-
transitions (by staying Still). Thus, they are equivalent to nondeterministic finite automatas, and recog-
nize the class of regular languages.

Exercise 4 : Challenge: Resetting .
What class of languages is recognized by a Turing machine where the head can write and then move
Right or reset to the leftmost cell of the tape, but not move Left? Explain your answer.
Answer:
Those Turing machines are equivalent to classical Turing machines, so they recognize Turing-recognizable
languages. Here is how we can simulate a Left-move:

1. Mark the current character, then reset.

2. If the leftmost character is marked, then unmark it and Reset, the Left-move has been simulated.

3. Otherwise, mark it and move Right.

4. If the current character is unmarked, then Reset. Move Right until you reach a marked character.
Unmark it, move Right. If the current character is marked, then go to step 5, otherwise go to step 4.

2

5. If the current character is marked, then the previous character was the one reached by the Left-move:
unmark it, Reset and move Right until you reach the marked character, and we are done.

The idea is to mark the character you started from, and then Reset and mark every character one by
one until you have two marked characters side-by-side, in which case the leftmost of the two is the one
reached by the Left-move.
Since we can simulate Left-moves and still have access to Right-moves, we can simulate classical Turing
machines using this variant.

3 Closure under complement

Exercise 5 : Complementation.
Recall that the complement of a language L over Σ is L = Σ∗ \ L.

1. Prove that decidable languages are closed under complement.

2. Prove that Turing-recognizable languages are not closed under complement.

Answer:

1. Assume that L is decided by a Turing machine M . We construct a Turing machine M that decide
L. Simply execute M on the input. If M accepts, then reject; and if M rejects, then accept.

2. We reason by contradiction. Let L be a Turing-recognizable language, then L is Turing-recognizable
too. But then, we can use the Turing machines that recognize L and L to decide L: execute both
Turing machines in parallel (basically, have each of them alternate doing one computation step), if
the one that recognizes L accept then accept, and if the one that recognizes L accepts then reject.
This Turing machine is correct since both languages are Turing-recognizable, and it is a decider for
L. Thus, if the Turing-recognizable language class is closed under complement, then every Turing-
recognizable language is decidable. This is a contradiction, since ATM is Turing-recognizable and
undecidable.

4 Other closures

Exercise 6 : Union.
Prove that decidable languages and Turing-recognizable languages are closed under union.
Answer:

1. Assume that L1 and L2 are decided by Turing machines M1 and M2. We construct a Turing
machine M that decide L1 ∪L2. Have two tapes, copy the input on the second tape, execute M1 on
the first tape. If M1 accepts the word, then accept. Otherwise, execute M2 on the second tape. If
M2 accepts the word, then accept. Otherwise, reject. Note that this works since both languages are
decidable, so the computation will end.

2. Assume that L1 and L2 are recognized by Turing machines M1 and M2. We construct a Turing
machineM that recognizes L1∪L2. Have two tapes, copy the input on the second tape. Then execute
M1 and M2 at the same time on their respective tapes (basically, have each of them alternate doing
one computation step). Since both languages are Turing-recognizable, if the input is in one of the
languages, then the corresponding Turing machine will halt and accept it, in which case we accept
the input.

3

Exercise 7 : Intersection.
Prove that decidable languages and Turing-recognizable languages are closed under intersection.
Answer:

1. Assume that L1 and L2 are decided by Turing machines M1 and M2. We construct a Turing
machine M that decide L1 ∩ L2. Have two tapes, copy the input on the second tape, execute M1

on the first tape. If M1 rejects the word, then reject. Otherwise, execute M2 on the second tape. If
M2 rejects the word, then reject. Otherwise, accept. Note that this works since both languages are
decidable, so the computation will end.

2. Assume that L1 and L2 are recognized by Turing machines M1 and M2. Note that if a word is
in the intersection of the two languages, then both machines will halt. So, execute M1. If it halts
and accepts, then execute M2. If it also halts and accepts, then accept. If any of the two machines
reject, then we reject; and if any of them loop then our machine will loop and thus not accept the
input.

Exercise 8 : Concatenation.
Prove that decidable languages and Turing-recognizable languages are closed under concatenation.
Answer:

1. Assume that L1 and L2 are decided by Turing machinesM1 andM2. We construct a Turing machine
M that decide L1L2. The idea is that, for an input w, we use two other tapes, where we will try
decompositions of w into x and y (the first tape will keep note of w). For each decomposition, we
run M1 on x and M2 on y. If both machines accept, then we accept w. Otherwise, we go to the
next possible decomposition. If all decompositions have been rejected by either of the two machines,
then M rejects w.

2. Assume that L1 and L2 are recognized by Turing machines M1 and M2. Again, we use other tapes
to compute all possible decompositions of an input w into x and y. However, this time, we cannot
try decompositions one by one (since the machines may loop), but we can try all decompositions in
parallel. So we do one step of M1 on the first x, one step of M2 on the first y, one step of M1

on the second x, and so on until the last y; and we iterate. If, for a given decomposition, the two
Turing machines halt and accept, then we accept. This recognizes L1L2.

5 Reducibility

Exercise 9 : United states.
Prove that the following language is undecidable:

L = {< M, q,w > |M is a Turing machine, q is a state of M , and M reaches q in its computation on w}.

.
Answer:
Assume by contradiction that L is decidable, and let DL be a Turing machine that decides L. We construct
the following Turing machine:

S := On input < M,w >:

1. Let qa be the accepting state of M . Run DL on < M, qa, w >.

2. If DL accepts, then accept. Otherwise, reject.

It is easy to see that S decides ATM , a contradiction.

4

Exercise 10 : Inclusivity .
Prove that the following language is undecidable:

L = {< M1,M2 > | M1 and M2 are Turing machines, and L(M1) ⊆ L(M2)}.

Answer:
Assume by contradiction that L is decidable, and let DL be a Turing machine that decides L. We construct
the following Turing machine:

S := On input < M >:

1. Construct a Turing machine R that rejects every input (thus, L(R) = ∅).

2. Run DL on < M,R >. If DL accepts, then accept.

It is easy to see that S accepts < M > if and only if L(M) ⊆ ∅, that is if L(M) = ∅. Hence, S decides
the problem ETM , a contradiction.

6 Rice’s Theorem

Exercise 11 : Context-freedom.
Prove that the following language is undecidable:

L = {< M > | M is a Turing machine, and L(M) is context-free}.

Answer:
Being context-free is a nontrivial property (there are Turing machines that recognize context-free lan-
guages, and some that recognize non-context-free languages), and depends only on the language. By using
Rice’s Theorem, we obtain the result.

Exercise 12 : Reverting .
Prove that the following language is undecidable:

{< M > | M is a Turing machine, and L(M) = L(M)R}.

Answer:
Having its language being equal to its reverse is a nontrivial property, and depends only on the language.
By using Rice’s Theorem, we obtain the result.

5

