

Computability and Complexity

Exam

Turing machines and decidability

Guidelines

This is an oral exam. You have 2 hours to prepare exercises, and then 45 minutes to explain your answers. You have to solve 1 exercise per part, so in total you will have to prepare 6 exercises.

1 Turing machines

Exercise 1: Logic 101.

Give an implementation-level description of a Turing machine that, from an input $\#w_1\#w_2\#$ (where w_1 and w_2 are strings over $\{0,1\}$, with $|w_1| = |w_2| > 0$), compute **one** of the following functions:

- 1. The logical AND (x AND y = 1 if and only if x = y = 1);
- 2. The logical OR (x OR y = 0 if and only if x = y = 0);
- 3. The logical XOR $(x \text{ XOR } y = 1 \text{ if and only if } x \neq y)$.

Those functions are **bit-by-bit** operations. So, for instance, 111 AND 101 = 101; 000 OR 101 = 101; 111 XOR 101 = 010.

Exercise 2: ABC is easy as 123.

For a word w and a character ℓ , denote by $|w|_{\ell}$ the number of ℓ 's in w.

Decide $L = \{w \in \{a, b, c\}^* \mid |w|_a > |w|_b > |w|_c\}.$

2 Computation models

Exercise 3: Without Left.

What class of languages is recognized by a Turing machine where the head can write and then move Right or stay Still, but not move Left? Explain your answer.

Exercise 4: Challenge: Resetting.

What class of languages is recognized by a Turing machine where the head can write and then move Right or reset to the leftmost cell of the tape, but not move Left? Explain your answer.

3 Closure under complement

Exercise 5: Complementation.

Recall that the complement of a language L over Σ is $\overline{L} = \Sigma^* \setminus L$.

- 1. Prove that decidable languages are closed under complement.
- 2. Prove that Turing-recognizable languages are **not** closed under complement.

4 Other closures

Exercise 6: Union.

Prove that decidable languages and Turing-recognizable languages are closed under union.

Exercise 7: Intersection.

Prove that decidable languages and Turing-recognizable languages are closed under intersection.

Exercise 8: Concatenation.

Prove that decidable languages and Turing-recognizable languages are closed under concatenation.

5 Reducibility

Exercise 9: United states.

Prove that the following language is undecidable:

 $L = \{ \langle M, q, w \rangle \mid M \text{ is a Turing machine, } q \text{ is a state of } M, \text{ and } M \text{ reaches } q \text{ in its computation on } w \}.$

.

Exercise 10: Inclusivity.

Prove that the following language is undecidable:

$$L = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are Turing machines, and } L(M_1) \subseteq L(M_2) \}.$$

6 Rice's Theorem

Exercise 11: Context-freedom.

Prove that the following language is undecidable:

$$L = \{ \langle M \rangle \mid M \text{ is a Turing machine, and } L(M) \text{ is context-free} \}.$$

Exercise 12: Reverting.

Prove that the following language is undecidable:

$$\{ \langle M \rangle \mid M \text{ is a Turing machine, and } L(M) = L(M)^R \}.$$