
Computability and Complexity

Exercises

Context-free languages

Exercise 1 : Elementary training .
Let Σ = {a, b}. For each of the following languages, give a context-free grammar that generates it:

1. {w ∈ Σ∗ | w contains at least three b};

2. {w ∈ Σ∗ | w starts and ends with the same symbol};

3. {w ∈ Σ∗ | w has odd length};

4. {w ∈ Σ∗ | w has odd length and its middle symbol is a};

5. {w | w is a palindrome};

6. {w | w contains as many a as b}.

Answer:

1. S → RbRbRbR
R→ ε | Ra | Rb

2. S → aRa | bRb | a | b | ε
R→ ε | aR | bR

3. S → aA | bA
A→ ε | aS | bS

4. S → a | aSa | aSb | bSa | bSb

5. S → ε | a | b | aSa | bSb

6. S → ε | SaSbS | SbSaS

Exercise 2 : Ambiguous elementary school .
Let Σ = {a, b, c}. Give a context-free grammar that generates the language

{aibjck | i = j or j = k; i, j, k ≥ 0}.

Is your grammar ambiguous? Justify.
Answer: The following grammar ensures that either there are as many a than b, or that there are as
many b than c:

S → ε | RijC | ARjk
Rij → ε | aRijb
C → ε | cC

Rjk → ε | bRjkc
A → ε | aA

1

However, this grammar is ambiguous. Indeed, the string abc can be generated by the two following leftmost
derivations:

S ⇒ RijC ⇒ aRijbC ⇒ abC ⇒ abcC ⇒ abc

and
S ⇒ ARjk ⇒ aARjk ⇒ aRjk ⇒ abRjkc⇒ abc.

Exercise 3 : Pushdown automatas are not pushovers! .
For each of the following languages, construct a pushdown automata that recognizes it:

1. {w ∈ {a, b}∗ | w has twice as many a than b};

2. {aibjck | i = j or j = k; i, j, k > 0};

3. {ambnc2(m+n) | m,n ≥ 0}.

Answer: We consider that we can push and pop several symbols at the same time. As we saw in the
course, this can be done by adding new states.

1. The automata will read the word and use the stack to "count" a and b. If it reads a and the top
of the stack is b, it will pop it; otherwise it will push a. If it reads b, there are several cases: if
there are two a on top of the stack, it will pop them; if there is one a, it will replace it by b, and
otherwise, it will push two b. It is easy to check that the word will be accepted (by empty stack) if
there are twice as many a than b.

qstart

a, ε→ a
a, b→ ε
b, a→ b
b, aa→ ε
b, ε→ bb

2. The automata will be nondeterministic. The top path will be the case where we will check if i = j,
and the bottom path will be the case where we will check if j = k.

q0start q1

qt1 qt2 qt3

qb1 qb2 qb3

q4
ε, ε→ $

a, ε→ a

a, ε→ ε

a, ε→ a

b, a→ ε

a, ε→ ε

b, ε→ b

b, a→ ε

c, ε→ ε

b, ε→ b

c, b→ ε

c, ε→ ε

ε, $→ ε

c, b→ ε

ε, $→ ε

3. We will use the stack to count the a and b, by pushing two characters for each of those. Then, we
will read c while popping the characters on the stack. The automata will accept the word if, at the
end, the stack is empty. Note that we have to consider the where the word is empty.

2

q0start

qa

qb

qc

qf

ε, ε→ $

a, ε→ ##

b, ε→ ##

c,#→ ε

ε, $→ ε

b, ε→ ##

c,#→ ε

c,#→ ε

ε, $→ ε

Exercise 4 : Closing exercise.
Prove that the class of context-free languages is closed under union, concatenation, star and reversal1.
Answer:

1. Let L1 and L2 be two context-free languages, and let G1 = (V1,Σ1, R1, S1) and G2 = (V2,Σ2, R2, S2)
be the context-free grammars such that L(G1) = L1 and L(G2) = L2. We construct G = (V,Σ, R, S)
such that L(G) = L1 ∪ L2:

• Σ = Σ1 ∪ Σ2;

• V = V1 ∪ V2 ∪ {S};
• R = R1 ∪R2 ∪ {S → S1 | S2}.

2. Let L1 and L2 be two context-free languages, and let G1 = (V1,Σ1, R1, S1) and G2 = (V2,Σ2, R2, S2)
be the context-free grammars such that L(G1) = L1 and L(G2) = L2. We construct G = (V,Σ, R, S)
such that L(G) = L1L2:

• Σ = Σ1 ∪ Σ2;

• V = V1 ∪ V2 ∪ {S};
• R = R1 ∪R2 ∪ {S → S1S2}.

3. Let L be a context-free language, and let G = (V,Σ, R, S) such that L(G) = L. We construct
G∗ = (V ∗,Σ∗, R∗, S∗) such that L(G∗) = L∗:

• Σ∗ = Σ;

• V ∗ = V ∪ {S∗};
• R∗ = R ∪ {S∗ → ε | S∗S}.

4. Let L be a context-free language, and let G = (V,Σ, R, S) such that L(G) = L. The grammar
GR = (V,Σ, RR, S) (where RR is R where every right-hand side of each rule is reversed) verifies
L(GR) = LR.

Exercise 5 : More pumping! .
Use the pumping lemma to prove that the following languages are not context-free:

1. {anbnanbn | n ≥ 0};

2. {anba2nba3n | n ≥ 0};
1Recall that, given L, its reverse language LR is the language containing all the words in L in reverse order.

3

3. {w#t | w, t ∈ {a, b}∗ and w is a substring of t}.

Answer: In all the following answers, we assume by contradiction that the language is context-free, and
apply the pumping lemma. Let p be the pumping length.

1. Let s = apbpapbp = uvxyz. Now, since |vxy| ≤ p, there are several possibilities:

• If vxy is composed only of a or b, then the string uv2xy2z will not be in the language (since
|vy| ≥ 1), a contradiction.

• If vxy is in the first (resp. second) apbp, then s′ = uv2xy2z = ap+kbp+`apbp (resp. apbpap+kbp+`)
with at least one of k and ` positive, and thus s′ is not in the language, a contradiction.

• If vxy contains the middle point of s, then s′ = uv2xy2z = apbp+kap+`bp with at least one of
k and ` positive, and thus s′ is not in the language, a contradiction.

2. Let s = apba2pba3p = uvxyz. Note that neither v nor y can contain a b, since otherwise uv0xy0z
would contain less than two b and thus not belong to the language, a contradiction. By dividing
the word into three segments of consecutive a, it is clear that v and y belong to at most two of
these segments. Then, in s′ = uv2xy2z, the 1 : 2 : 3 length ratio between the segments is not
maintained, since at most two segments see their length increase. Thus, s′ is not in the language,
a contradiction.

3. Let s = apbp#apbp = uvxyz. Note that neither v nor y can contain #, since otherwise uv0xy0z
does not contain # and thus is not in the language, a contradiction. There are several cases to
consider:

• If both v and y are nonempty, and are in w, then uv2xy2z is not in the language, since the
left part will contain more characters than the right part, a contradiction.

• If both v and y are nonempty, and are in t, then uv0xy0z is not in the language, since the
right part will contain less characters than the left part, a contradiction.

• If one of v and y is empty, then consider that they are in the same part (w or t) and apply
one of the above.

• If both v and y are nonempty, v is in w and y is in t, then since |vxy| ≤ p, we have v = bk

and y = a` with k, ` > 0. But now s′ = uv2xy2z = apbp+k#ap+`bp, and the left part is not a
substring of the right part. Thus, s′ is not in the language, a contradiction.

All this implies that both v and y must be empty, which is a contradiction.

Exercise 6 : Problem: doing additions.
In this exercise, we add a write function to a pushdown automata. More formally, we define a pushdown
writer-automata as a 7-uple: A = (Q,Σ,Γ,W, δ, q0, F), where W is the writing alphabet, and

δ : Q× Σε × Γε → P(Q× Γε ×Wε)

is the transition function. The way such an automata works is the following: it reads a character (which
may be ε) of the input and may pop the top of the stack, then it changes a state while (maybe) pushing
a character on top of the stack and (maybe) writing a character. The characters that are written cannot
be modified afterwards. The following figure illustrates how we can draw such an automata:

q r
a, s→ t, w(`)

Here, when in state q, reading the character a from the input and having s at the top of the stack, we
will pop s, push t and write `.
Other functions of the pushdown writer-automata are exactly the same than those of a classical pushdown
automata, in particular the acceptance of an input.

4

1. Draw a pushdown writer-automata that recognizes the language {anbn | n ≥ 0} and writes down
the number of a in unary, followed by a #, followed by the number of b in unary. For instance,
when reading aaabbb, it will write 111#111 and accept the word; and when reading aabbb, it will
write 11#111 and reject the word.

2. Let w1 and w2 be two positive integers written in unary. Draw a pushdown writer-automata that
writes their sum in unary. You have to decide the way to represent the two numbers as input. The
automata must end its computation in a final state.

3. Let w1 and w2 be two positive integers written in binary, such that they have the same number
of digits (if they do not, we can simply add 0s at the beginning of the smallest number until it is
the case). Draw a pushdown writer-automata that writes their sum in binary. You have to decide
the way to represent the two numbers as input. The automata must end its computation in a final
state.
Hint: You may have part of the input in reverse order, and write the result in reverse order too.

4. Explain how you could use more stacks in the previous writer-automata to have no reverse order
shenanigans.

5. Explain how to construct a pushdown writer-automata to compute the sum of two positive integers
written in decimal.

Answer:

1. We need to count the number of a, then the number of b. But if we have more b than a, then we
need to reject the word, and so we create a rejecting state to continue counting the b (note that if
we have more a than b, then we will be stuck in a non-accepting state).

q0start qa qb

qr

qf

ε, ε→ $, w(ε)

a, ε→ a,w(1)

ε, ε→ ε, w(#)

b, a→ ε, w(1)

b, $→ ε, w(1)

ε, $→ ε, w(ε)

b, ε→ ε, w(1)

2. If w1 and w2 are written in unary, then w1 +w2 = w1w2. So the input will be w1w2, and we simply
have to write down the input. The stack is not necessary.

q0start

1, ε→ ε, w(1)

3. We will let the input be w1#wR2 . First, we will store w1 in the stack, so that the highest weight
digit will be at the bottom. Then, we will use two states (one for when we currently have no carry,
and one for when we have one) to write down the sum of w1 and w2. It will obviously be in reverse
order. Then, when going to the accept state, we may write a last 1 if we still had a carry.

5

q0start q1 qn

qc

qf

ε, ε→ $, w(ε)

0, ε→ 0, w(ε)
1, ε→ 1, w(ε)

#, ε→ ε, w(ε)

0, 0→ ε, w(0)
0, 1→ ε, w(1)
1, 0→ ε, w(1)

1, 1→ ε, w(0)

ε, $→ ε, w(ε)

0, 1→ ε, w(0)
1, 0→ ε, w(0)
1, 1→ ε, w(1)

0, 0→ ε, w(1)

ε, $→ ε, w(1)

4. We could use a second stack to store w2, which would allow us to use w1#w2 as an input. Then,
we could use a third stack to store the result of the addition. When the stacks containing w1 and
w2 become empty, we would simply write every character of the third stack, which would give us the
result in the good order.

5. We can use the same template than in the previous questions. Indeed, when adding two numbers in
decimal, the carry can be at most 1 (the highest possible sum is 9 + 9 with a carry, which leaves a
carry of 1). Now, we only need to be careful while writing the result. For example, when reading
a 4 and popping a 2 in the no-carry state, we would write 6 and remain in the same state; when
reading a 4 and popping a 6 in the no-carry state, we would write 0 and go to the carry state; when
reading a 4 and popping a 5 in the carry state, we would write 0 and remain in the same state; and
so on.

Like before, using three stacks allows us to have everything in the correct order.

6

