Computability and Complexity

Exercises

Finite automatas and regular languages

Exercise 1 : *First automatas*.

Let $\Sigma = \{a, b\}$. Construst a deterministic automata that accepts the following:

- 1. No word over Σ ;
- 2. Any word over Σ ;
- 3. Only the words composed of one symbol of Σ ;
- 4. $a^* \cup b^*$.

Exercise 2 : Salad of automatas.

Let $\Sigma = \{a, b\}$. Construct an automata that accepts the following languages:

- 1. $L_1 = \{ w \in \Sigma^* \mid \text{every } a \text{ in } w \text{ is immediately preceded and followed by a } b \};$
- 2. $L_2 = \{ w \in \Sigma^* \mid ab \notin w \text{ and } ba \notin w \};$
- 3. $L_3 = \{ w \in \Sigma^* \mid ab \in w \text{ or } ba \in w \};$
- 4. $L_4 = \{ w \in \Sigma^* \mid ab \in w \text{ and } ba \in w \};$
- 5. $L_5 = \{ w \in \Sigma^* \mid w \text{ contains an odd number of } a \text{ and an odd number of } b \};$
- 6. $L_6 = \{ w \in \Sigma^* \mid aaa \notin w \text{ and } w \text{ contains an odd number of } b \};$
- 7. $L_7 = \{ w \in \Sigma^* \mid aa \in w \text{ and the first occurrence of } aa \text{ is not preceded by } abab \}.$

Exercise 3 : Binary words.

Let $\Sigma = \{0, 1\}$. Construct an automata that accepts the following languages:

- 1. $L_0 = \{0^m 1^n \mid m, n \ge 0\};$
- 2. $L_1 = \{0^m 1^n \mid m, n > 0\};$
- 3. $L_{10} = \{ w \in \Sigma^* \mid w \text{ ends with } 101 \};$
- 4. $L_{11} = \{ w \in \Sigma^* \mid w \equiv 0 \mod 3 \}.$

Exercise 4 : Binary operations.

Let L be a language. We define L^R as the language containing all the words in L written in reverse (for example, if L contains *abab* and *xkcd* then L^R contrains *baba* and *dckx*).

1. Prove that if L is regular, then L^R is regular.

Let $\Sigma_2 = \left\{ \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$. Note that any word $w \in \Sigma_2^+$ can be read as two binary numbers, one for each row. The top number is denoted by w^t and the bottom number by w^b .

2. Prove that the language $L = \{w \in \Sigma_2^+ \mid w^t > w^b\}$ is regular.

Let $\Sigma_3 = \left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \dots, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$. Again, for every word $w \in \Sigma_3^+$ we get three binary numbers. The top number is w^t , the middle number is w^m and the bottom number is w^b .

3. Prove that the language $L = \{w \in \Sigma_3^+ \mid w^b = w^t + w^m\}$ is regular.

Exercise 5 : The Baker Street Irregulars.

Use the pumping lemma to prove that the following languages are not regular:

- 1. $L_1 = \{a^n b^n \mid n \ge 0\};$
- 2. $L_2 = \{a^{n^2} \mid n > 0\};$
- 3. $L_3 = \{a^n b^{2n} \mid n > 0\};$
- 4. $L_4 = \{(ab)^n c^n \mid n \ge 0\}.$

Use the properties of regular languages to prove that the following language is not regular:

5. $L_5 = \{a^m b^n \mid m \neq n\}.$

Prove in two different ways that the following language is not regular:

6. $L = \{w \in \{a, b\}^* \mid w = w^R\}$ (that is, L is the language of all the palindromes over $\{a, b\}$).

Hint: One method uses the pumping lemma, the other one the fact that an automata accepting L is finite.