
Computability and Complexity

Exercises

The Church-Turing Thesis

Exercise 1 : Understanding the definitions.
Based on the formal definition of a Turing machine, answer the following questions and justify your
answers:

1. Can a Turing machine write the blank symbol ␣ on its tape?

2. Can the tape alphabet Γ and the input alphabet Σ be equal?

3. Can a Turing machine’s head be in the same location in two successive configurations?

4. Can a Turing machine contain a single state?

Answer:

1. Yes, since ␣∈ Γ: the blank symbol is in its tape alphabet, and so a Turing machine can write it.

2. No, since ␣/∈ Σ.

3. Yes, if the machine’s head was on the leftmost cell and it has to move Left, then it will remain on
the leftmost cell.

4. No, since a Turing machine necessarily has an accept state and a reject state, so they have to be
distinct.

Exercise 2 : A weird algorithm.
Explain why the following is not a description of a Turing machine:

Mbad = The input is a polynomial p over variables x1, . . . , xn.

1. Try all possible settings of x1, . . . , xn to integer values.

2. Evaluate p on all those settings.

3. If any of these settings evaluate to 0, accept ; otherwise, reject.

Answer: It is easy to see that step 1 will never finish, since the number of possible settings is infinite.
Hence, the machine will never reach step 2, and thus Mbad is not a valid description of a Turing machine.

Exercise 3 : Shifting the blame.
Let w be a word over an alphabet Σ such that # /∈ Σ. Construct a formal-level Turing machine that
takes input w and enters the accept state once its tape contains #w. Explain why this machine is useful.
Answer: This machine is very useful, since it allows us to check whether we reach the leftmost cell of
the tape or not. Indeed, in a classical Turing machine, as we saw in the course, we need a somewhat
complicated construction to do this check. Now, all we have to do is to shift the input to the right and use
a special character to mark the leftmost cell of the tape. Thus, bringing the head back to the beginning of
the input will be easier.
First we go to the end of the word, then we shift each character to the right. Once we have shifted the first
character of the input, the head will remain on the leftmost cell, which will contain the blank character.
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We only have to write # and enter the accept state. Note that we need |Σ| states q`2: one for each symbol
` ∈ Σ.

q0start q1

q`2 q3

qa

`→ `, R (∀` ∈ Σ)

␣→ ␣, L

`→ ␣, R

␣→ #, L

␣→ `, L

␣→ ␣, L

Exercise 4 : Reusing machines.
Let w be a word over an alphabet Σ such that # /∈ Σ and such that w is of even length and not empty.
Give the implementation-level description of a Turing machine that takes input w and enters the accept
state once its tape contains the word where # is inserted in the middle of w.
Hint: You may use several tapes, and reuse the machine of Exercise 3.
Answer: The idea is to count every other character in w using a second tape, then to apply the Turing
machine constructed in Exercise 3 to the second half of the input.

M = On input w:

1. Scan the first tape, writing a 1 and moving Right in the second tape every other character (so that
the second tape contains |w|2 in unary).

2. Move the second head to the leftmost cell of the second tape, and move the first head Left one step
(so that it is on the last character of the input).

3. Do the following as long as the second head reads a 1:

A. Execute the loop q1 − q`2 − q3 − q1 of the machine constructed in Exercise 3. Each time the
machine loops back to q1, move the second head Right one step.

4. Write a #, then accept.

Exercise 5 : Languages.
Give implementation-level descriptions of Turing machines that decide the following languages:

1. {w ∈ {a, b}∗ | w contains as many a as b};

2. {anbncn | n ≥ 0};

3. {anba2nba3n | n ≥ 0}.

Draw a formal-level implementation of one of those machines.
Answer:

1.M = On input string w:

1. Scan the tape and mark the first a that has not been marked. If no unmarked a has been found,
go to step 3. Otherwise, bring the head back to the leftmost cell of the tape.

2. Scan the tape and mark the first b that has not been marked. If no unmarked b has been found,
reject. Otherwise, bring the head back to the leftmost cell of the tape, and go back to step 1.

3. Bring the head back to the leftmost cell of the tape. Scan the tape: if there is an unmarked b,
reject; otherwise, accept.
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2. We use a machine with two tapes. As seen in the course, this is equivalent to a machine with one
tape. The idea is to use the second tape to count n in unary.

M = On input string w:

1. If the first cell of the first tape contains the blank character, accept.

2. Scan the first tape to verify that the input is in a+b+c+. Otherwise, reject.

3. Bring the first head back to the leftmost cell of the first tape.

4. Read all the a in the first tape. Each time an a is read, write a 1 in the second tape and move
its head right.

5. Bring the second head back to the leftmost cell of the second tape.

6. Read all the b in the first tape. Each time a b is read, move the second head one step right.

7. If the second head is not on a blank state, reject (we have less b than a). Otherwise, move the
second head one step left. If it is not on a 1, reject (we have more b than a).

8. Do steps 5-7, replacing the b by c.

9. Accept.

3. We could again use a second tape to count n in unary, and then make sure that we count twice then
thrice the second tape for the second and third series of consecutive a. However, another option is
to use three tapes: one will count 2n and the other one 3n. Again, this is equivalent to having only
one tape.

M = On input string w:

1. If the input is bb, accept.

2. Scan the first tape to verify that the input is in a+ba+ba+. Otherwise, reject.

3. Bring the first head back to the leftmost cell of the first tape.

4. Read all the first consecutive a in the first tape (so, until you reach the first b). Each time an
a is read, write a 1 in the second tape and move its head right before writing another 1 and
moving again its head right; and on the third tape apply three times the following: write a 1,
move the head right.

5. Bring the second head back to the leftmost cell of the second tape.

6. Read all the next consecutive a in the first tape (so, until you reach the second b). Each time
an a is read, move the second head one step right.

7. If the second head is not on a blank state, reject (we have less than 2n a). Otherwise, move
the second head one step left. If it is not on a 1, reject (we have more than 2n a).

8. Bring the third head back to the leftmost cell of the third tape.

9. Read all the final consecutive a in the first tape (so, until you reach the first blank character).
Each time an a is read, move the third head one step right.

10. If the third head is not on a blank state, reject (we have less than 3n a). Otherwise, move the
third head one step left. If it is not on a 1, reject (we have more than 3n a).

11. Accept.

We draw the formal-level implementation of the first machine. Note that we use a slightly modified input
#w, so that the character # marks the leftmost cell of the tape. See Exercise 3 to see how we can do this
(basically we execute the Turing machine constructed in Exercise 3 before executing the following one).
We denote qaccept by qa and qreject by qr.
In state q0, we look for the first uncrossed a. If no such a is found, we go to state q4; otherwise we go to
state q1. In state q1 we bring the head back to the leftmost cell. In state q2, we look for the first uncrossed
b. If no such b is found, we go the reject state; otherwise we go to state q3. In state q3 we bring the head
back to the leftmost cell, before going back to q0. In state q4 we bring the head back to the leftmost cell.
Then in state q5, we scan the tape. If we read b, then we go to the reject state, and if we reach the end
of the input, then we go to the accept state.
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q0start q1 q2 q3

q4 q5 qr

qa

b→ b, R
x→ x, R

a→ x, L

␣→ ␣, L

b→ b, L
x→ x, L

#→ #, R

a→ a,R
x→ x, R

b→ x, L

␣→ ␣, L

a→ a, L
x→ x, L

#→ #, R

b→ b, L
x→ x, L

#→ #, R

x→ x, L

b→ b, L

␣→ ␣, L

Exercise 6 : Turing’s elementary school .
Give implementation-level descriptions of Turing machines that compute the following functions (in every
case, we assume the numbers are not empty):

1. A function that takes a binary number, and deletes every useless 0 (so every 0 before the first 1);

2. The increment function on binary numbers (the input is a binary number w, and we want to
compute w + 1);

3. The decrement function on binary numbers (the input is a binary number w, and we want to
compute w − 1) (assume w 6= 0);

4. The binary-to-unary conversion function (the input is a binary number w, and we want to compute
the unary number equal to w);

5. The binary addition function (the input is w1#w2 where w1 and w2 are binary numbers, and we
want to compute w1 + w2);

6. The binary multiplication function (the input is w1#w2 where w1 and w2 are binary numbers, and
we want to compute w1w2).

You may use several tapes, and reuse machines that you already described or constructed.
Answer:

1. This machine is easy to construct, and may produce the empty word:

M0 = On input w:
1. Repeat as long as we do not read a 1 or the blank character:

A. Read a 0, remove it, shift the whole input to the left.
2. Accept.

2. Here, we first need to shift the input to the right (using the machine in Exercise 3), in case we need
one more bit. Then, we go to the right of the word, and change all the 1 to 0 before reaching a 0
that we change to 1. If we have not reached the special character, we reshift the whole input to the
left (such a machine is easy to construct by adapting the machine in Exercise 3).
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M+ = On input w:

1. Shift the input to the right.

2. Bring the head to the rightmost character of the input.

3. Repeat as long as we do not read a 0 or the special character #:

A. Read a 1, change it to a 0, move Left.

4. If the current character is a 0, change it to a 1, shift the whole input to the left, then accept.
Otherwise, change the character to a 1, then accept.

3. This is the reverse of the incrementer: we change the 0 to 1 until we reach a 1, that we then change
to 0. This time, we do not need to shift the word (maybe a useless 0 will be created, but we have
M0 to take care of that!), since we know that the word is not 0.

M− = On input w:

1. Bring the head to the rightmost character of the input.

2. Repeat as long as we do not read a 1:

A. Read a 0, change it to a 1, move Left.

3. Read a 1, change it to a 0, then accept.

4. This is very easy to construct by using the decrement machine: just verify if the input is 0, and
otherwise we write a new 1 each time we decrement the binary number.

Munary = On input w:

1. Execute M0. If, at the end of the execution, we get an empty tape, write 0 and accept.

2. Shift the input to the right twice, so that we have ##w. We will write the unary number
between the two #.

3. Move the head to the first character after the second #. Execute M0; if, at the end of the
execution, we have nothing left at the right of the second #, accept (the computation is over).

4. Execute M− on the word at the right of the second #. Move the head to the second #. Shift
everything from your position one step right, then go back to the new blank space on the left
of the second # and write 1. Go back to step 3.

5. For this one, we apply the following algorithm: while w2 6= 0, increment w1 and decrement w2. Good
thing we have the machines M+ and M−! We could use several tapes, but this is not necessary.

Madd = On input w1#w2:

1. Move the head Right until you have reached the first character of w2.

2. Execute M0, considering the first character of w2 as the leftmost character of the tape. If, at
the end of the execution, w2 is empty (checked by verifying that we read a blank character on
the right of the #), accept.

3. Execute M− on w2. Move the head to the leftmost cell on the tape.

4. Execute M+ on w1 (this can be done by modifying M+ such that the head stops going right in
step 2 when encountering #).

5. Go to step 1.

6. Again, we will use a simple algorithm: we add w1 to itself and decrement w2 as long as w2 6= 0. In
this case, it could be easier to use several tapes, but we can also simply have a first step where we
modify the input.

Mmul = On input w1#w2:

1. Modify the input so that we have 0#w1#w2 on the tape.

2. Move the head Right until you have reached the first character of w2.
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3. Execute M0, considering the first character of w2 as the leftmost character of the tape. If, at
the end of the execution, w2 is empty (checked by verifying that we read a blank character on
the right of the second #), accept (the result is then the first part of the input, up until the
first #).

4. Execute M− on w2. Move the head to the leftmost cell on the tape.

5. Change the tape (which contains w#w1#w2) into w#w1#w1#w2 (we want to save the value
of w1). Execute Madd on w#w1 (again, this can be done by considering that the tape ends
when hitting the second #). Now the tape contains (w+w1)##w1#w2, so remove the first #.

6. Go to step 2.

Exercise 7 : Several stacks.
For this exercise, I assume that you know everything that we saw in the class and exercises on context-free
languages.

1. Prove that a pushdown automata with two stacks is more powerful than a pushdown automata
with one stack.

2. Prove that you can simulate a Turing machine with a pushdown automata with two stacks.

3. What does that imply for pushdown automatas with more than two stacks?

Answer:

1. Clearly, a pushdown automata with two stacks recognize all context-free languages (just ignore the
second stack). Now we prove that we can recognize more languages using two stacks than using one
stack. The language {anbncn | n ≥ 0} is not context-free (as was proved in the course), but using
two stacks we can easily recognize it. When reading the a, push 1 in both stacks; then when reading
the b pop in the first stack; and when reading the c pop in the second stack. By being careful, we
can make sure that we recognize exactly this language (so we reject if any stack is nonempty or if a
stack is empty but its corresponding characters have not all been read). Thus, pushdown automatas
with two stacks are more powerful than basic pushdown automatas.

2. The idea is to translate the configuration uqv (so we are in state q with the head on the first character
of v in the input) by having the first stack containing u (with the first character at the bottom) and
the second stack containing v (with the first character on the top).

We initialize the simulation by reading the input, pushing every character in the first stack. Then
we pop every character from the first stack, pushing them in the second stack. Thus, the second
stack contains the whole input, with the first character on top and the last on the bottom.

Now, assume that we are in configuration uqv, and with a being the first character of v. If the
machine replaces a with b and moves Right, we pop a from the second stack and push b in the first
stack. If the machine replaces a with b and moves Left, we replace a by b on top of the second stack,
then pop the character on top of the first stack and push it on top of the second stack. It is easy to
see that, in both cases, the new configuration is simulated correctly by our pushdown automata with
two stacks.

3. Since Turing machines compute everything that we can compute, and that a pushdown automata
with two stacks is equivalent to a Turing machine, it means that adding more stacks does not give
more computing power.

Exercise 8 : The Double Infinity Gauntlet .
A Turing machine with a doubly-infinite tape is a Turing machine where the tape does not have a left
end. If you imagine the tape of a Turing machine as a table with indices in the set of natural numbers N,
then the doubly-infinite tape is a table with indices in the set of integers Z. The computation is exactly
the same, but the head will never encounter the leftmost end of the tape.
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Prove that the Turing machines with a doubly-infinite tape recognizes the class of Turing-recognizable
languages.
Answer: The idea here is to use two tapes to simulate a Turing machine with a doubly-infinite tape. Since
Turing machines with two tapes recognize the Turing-recognizable languages, this will prove the result.
At the beginning of the computation, the input is on the first tape. Now, we shift the input to the right and
add a special symbol on the leftmost cell of the first tape, and do the same for the second tape. Informally,
call t the doubly-infinite table representing the tape of the Turing machine with a doubly-infinite tape. The
first tape will represent t[0], t[1], t[2] . . . and the second tape will represent t[−1], t[−2], . . .. We will know
that we have to switch tapes when we encounter the special symbol.
In general, the computation in our two-tapes Turing machine is the same than in the Turing machine
with a doubly-infinite tape. When we are working on the second tape, we need to revert the Left and Right
movements. In both tapes, when we encounter the special symbol, we just change the tape we are working
on. More formally:

• The input alphabet is the same, and the tape alphabet is the same but with a special symbol added.

• The accepting and rejecting states are the same.

• Every other state is doubled: there will be one state for working on the first tape and one for working
on the second tape.

• The transitions for the states on the first tape are the same, with an exception: when we move Left,
we check if we have reached the special symbol. If this is the case, we go to the equivalent state on
the second tape.

• The transitions for the states on the second tape are the same, but with the movement of the head
reversed (so L become R and R becomes L). Furthermore, when we move Left (so Right in the
original Turing machine), we check if we have reached the special symbol, in which case we go to
the equivalent state on the first tape.

It is easy to see that such a machine will recognize the same language as the associated Turing machine
with a doubly-infinite tape, proving the result.
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