
Computability and Complexity

Exercises

The Church-Turing Thesis

Exercise 1 : Understanding the definitions.
Based on the formal definition of a Turing machine, answer the following questions and justify your
answers:

1. Can a Turing machine write the blank symbol ␣ on its tape?

2. Can the tape alphabet Γ and the input alphabet Σ be equal?

3. Can a Turing machine’s head be in the same location in two successive configurations?

4. Can a Turing machine contain a single state?

Exercise 2 : A weird algorithm.
Explain why the following is not a description of a Turing machine:

Mbad = The input is a polynomial p over variables x1, . . . , xn.

1. Try all possible settings of x1, . . . , xn to integer values.

2. Evaluate p on all those settings.

3. If any of these settings evaluate to 0, accept ; otherwise, reject.

Exercise 3 : Shifting the blame.
Let w be a word over an alphabet Σ such that # /∈ Σ. Construct a formal-level Turing machine that
takes input w and enters the accept state once its tape contains #w. Explain why this machine is useful.

Exercise 4 : Reusing machines.
Let w be a word over an alphabet Σ such that # /∈ Σ and such that w is of even length and not empty.
Give the implementation-level description of a Turing machine that takes input w and enters the accept
state once its tape contains the word where # is inserted in the middle of w.
Hint: You may use several tapes, and reuse the machine of Exercise 3.

Exercise 5 : Languages.
Give implementation-level descriptions of Turing machines that decide the following languages:

1. {w ∈ {a, b}∗ | w contains as many a as b};

2. {anbncn | n ≥ 0};

3. {anba2nba3n | n ≥ 0}.

Draw a formal-level implementation of one of those machines.

Exercise 6 : Turing’s elementary school .
Give implementation-level descriptions of Turing machines that compute the following functions (in every
case, we assume the numbers are not empty):

1



1. A function that takes a binary number, and deletes every useless 0 (so every 0 before the first 1);

2. The increment function on binary numbers (the input is a binary number w, and we want to
compute w + 1);

3. The decrement function on binary numbers (the input is a binary number w, and we want to
compute w − 1) (assume w 6= 0);

4. The binary-to-unary conversion function (the input is a binary number w, and we want to compute
the unary number equal to w);

5. The binary addition function (the input is w1#w2 where w1 and w2 are binary numbers, and we
want to compute w1 + w2);

6. The binary multiplication function (the input is w1#w2 where w1 and w2 are binary numbers, and
we want to compute w1w2).

You may use several tapes, and reuse machines that you already described or constructed.

Exercise 7 : Several stacks.
For this exercise, I assume that you know everything that we saw in the class and exercises on context-free
languages.

1. Prove that a pushdown automata with two stacks is more powerful than a pushdown automata
with one stack.

2. Prove that you can simulate a Turing machine with a pushdown automata with two stacks.

3. What does that imply for pushdown automatas with more than two stacks?

Exercise 8 : The Double Infinity Gauntlet .
A Turing machine with a doubly-infinite tape is a Turing machine where the tape does not have a left
end. If you imagine the tape of a Turing machine as a table with indices in the set of natural numbers N,
then the doubly-infinite tape is a table with indices in the set of integers Z. The computation is exactly
the same, but the head will never encounter the leftmost end of the tape.
Prove that the Turing machines with a doubly-infinite tape recognizes the class of Turing-recognizable
languages.

2


