
Computability and Complexity

Exercises

Decidability

Exercise 1 : 0− 1 sequences.
Prove that {0, 1}N, the set of all infinite sequences over {0, 1}, is uncountable.
Answer: We do a proof by diagonalization. Assume by contradiction that there is a bijective function f
from N to {0, 1}N. To each positive integer n we have an associated sequence sn. Denote by sn(i) the i-th
digit in sn. We construct the sequence s as follows:

s(n) = 1− sn(n)

Thus, the n-th digit in s is 0 if and only if the n-th digit in sn is 1 (and conversely). It is easy to see
that s /∈ Im(f), but s ∈ {0, 1}N, a contradiction.

Exercise 2 : A whole language.
Prove that L = {< A > | A is a DFA and L(A) = Σ∗} is decidable.
Answer: A DFA that accepts every word over Σ has the following properties:

1. It is complete (meaning that for every (q, a) ∈ Q×Σ such that q is accessible from the initial state
q0, there is an r ∈ Q such that δ(q, a) = r);

2. Every state is accepting (meaning F = Q).

So we can construct a Turing machine that verifies those two properties: simply do a breadth-first search
starting from the initial state and check that each state you reach is accepting and has a successor state
through δ with every character in Σ. The Turing machine will necessarily halt since A is finite. Reject at
any point if a condition is not verified, and otherwise (if the computation ends without rejecting) accept.
Such a Turing machine decides L.

Exercise 3 : Regexps.
Consider the problem of deciding whether a DFA A and a regular expression E verify L(A) = L(E).
Express this problem as a language and prove that it is decidable.
Answer: The language we consider is {< A,E > | L(A) = L(E), A is a DFA, E is a regular expression}.
To prove that it is decidable, we use the following Turing machine:

1. Convert E into an equivalent NFA B using the algorithm seen in Chapter 1.

2. Convert B into an equivalent DFA B′ using the algorithm seen in Chapter 1.

3. Run the Turing machine from Theorem 4.5 of Chapter 4 on input < A,B′ >. If the machine
accepts, then accept; otherwise, reject.

It is easy to see that this machine decides our language.

Exercise 4 : Towards the infinity .
Prove that L = {< A > | A is a DFA and L(A) is infinite} is decidable.
Hint: Think about the pumping lemma!

1

Answer: We want to reject the automatas that have a finite language and accept those that have an infinite
language. The pumping lemma guarantees that if a regular language contains a word of length at least p
(with p being its pumping length), then it will be infinite, since it will be possible to pump the word. Thus,
the language we want to decide is equivalent to {< A > | A is a DFA and ∃w ∈ L(A) such that |w| ≥ p}.
Now, we also know that the pumping length is at most the number of states in A. So we can construct
the following Turing machine:

1. Let k be the number of states in A.

2. Construct a DFA K that accepts all words of length k or more (it is trivial to construct).

3. Construct a DFA B that verifies L(B) = L(A) ∩ L(K) (it is possible, as seen in the homework on
languages).

4. Test whether L(B) = ∅ using the Turing machine constructed in the course (Theorem 4.4). If the
machine accepts, then reject; otherwise accept.

It is easy to see that it decides the language, and thus that it decides L.

Exercise 5 : Accepting palindromes.
Prove that L = {< A > | A is a DFA and A accepts some palindrome} is decidable.
Hint: Think about a CFG that generates a palindrome, and prove that the intersection between a regular
language and a context-free language is context-free.
Answer: First we prove that if Lr is regular and Lc is context-free, then Lr ∩ Lc is context-free. Let
Ar = (Qr,Σ, δr, qr, Fr) be a DFA that recognizes Lr, and let Ac = (Qc,Σ,Γ, δc, qc, Fc) be a PDA that
recognizes Lc. The automata (Q,Σ,Γ, δ, q0, F) with:

• Q = Qr ×Qc

• δ((q1, q2), `, a) = ((δr(q1, a), r), b) with (r, b) ∈ δc(q2, `, a)

• q0 = (qr, qc)

• F = (q1, q2) with q1 ∈ Fr and q2 ∈ Fc

recognizes Lr ∩ Lc, which proves the result.
The grammar with rule S → ε | a | b | aSa | bSb generates the language of all palindromes. Let P be a
pushdown automata that recognizes the same language. We have the following Turing machine:

1. Construct a PDA B that verifies L(B) = L(A) ∩ L(P) (it is possible since the intersection of a
context-free language and of a regular language is context-free).

2. Construct a CFG GB such that L(GB) = L(B) (using the method described in the course).

3. Test whether L(GB) = ∅ using the Turing machine constructed in the course (Theorem 4.8). If the
machine accepts, then reject; otherwise accept.

This Turing machine clearly decides L.

2

