
Computability and Complexity

Exercises

Reducibility

Exercise 1 : Accepting the reverse.
Prove that L = {< M > | M is a Turing machine and M accepts wR ⇔M accepts w} is undecidable.
Answer:
Assume by contradiction that there is a Turing machine DL that decides L. We construct the following
Turing machine:

S := On input < M,w >:

1. Construct the following Turing machine:

A := On input x:
a. If x /∈ {ab, ba} then reject
b. If x = ab then accept
c. Run M on w and accept if M accepts w

2. Run DL on < A >. If DL accepts, then accept; otherwise, reject.

It is easy to see that DL will accept A if and only if M accepts w. Thus, S decides ATM , which is a
contradiction since ATM is undecidable.

Exercise 2 : Two halts make a whole.
Prove that L = {< M1,M2 > | M1 and M2 are Turing machines, and ∃w s.t. M1 and M2 accept w} is
undecidable.
Answer:
Assume by contradiction that L is decidable, and let DL be a Turing machine that decides it. We construct
the following Turing machine:

S := On input < M,w >:

1. Construct the following Turing machine:

Mw := On input x:
a. If x 6= w, then loop forever
b. Run M on w and accept if M accepts w

2. Run DL on < M,Mw >. If DL accepts, then accept; otherwise, reject.

It is easy to see that DL will accept < M,Mw > if and only if M accepts w, since Mw loops on every
input that is not w and will accept w if and only if M accepts w. Thus, S decides ATM , a contradiction.

Exercise 3 : Rice’s Theorem is not about eating .
We say that P is a nontrivial property if it is neither true nor false for every computable function.
Prove the following:
Rice’s Theorem If P is a nontrivial property of the language of a Turing machine, then determining
whether a given Turing machine’s language has property P is undecidable.
More formally: let P be a language consisting of Turing machine descriptions with the following proper-
ties:

1

1. There exist Turing machines M1 and M2 such that M1 ∈ P and M2 /∈ P (i.e., P is nontrivial);

2. For all Turing machines M1 and M2, if L(M1) = L(M2), then < M1 >∈ P ⇔< M2 >∈ P (i.e., P
is a property of the Turing machines’ languages).

Prove that P is undecidable.
Answer:
Assume by contradiction that P is a nontrivial property of the language of a Turing machine, and that P
is decidable. Call DP a Turing machine that decides P . We construct a Turing machine S that decides
ATM by using DP .
First, let T∅ be a Turing machine that accepts nothing (i.e., L(T∅) = ∅). Without loss of generality,
assume < T∅ >/∈ P (otherwise, we can proceed with P). Now, P is nontrivial, so there exists a Turing
machine T such that < T >∈ P . We construct S the following way:

S := On input < M,w >:

1. Construct the following Turing machine:

Mw := On input x:

a. Simulate M on w. If it halts and rejects, then reject. If it halts and accepts, then go to step b.

b. Simulate T on x. If it accepts, then accept.

2. Use DP to decide whether Mw ∈ P . If it is the case, then accept; otherwise, reject.

Now, Mw simulates T if M accepts w. Hence, L(Mw) = L(T) if M accepts w, and L(Mw) = ∅ otherwise.
This implies that Mw ∈ P if and only if M accepts w. Thus, deciding P allows us to decide ATM , a
contradiction.

Exercise 4 : Eating Rice.
Use Rice’s Theorem to prove that the following languages are undecidable:

1. L1 = {< M > | M is a Turing machine and L(M) is infinite}

2. L2 = {< M > | M is a Turing machine and |L(M)| ≥ 3}

3. L3 = {< M > | M is a Turing machine and L(M) = Σ∗}

Answer:
In all cases, we need to prove the two conditions of Rice’s Theorem, that is: the property is nontrivial,
and it depends only on the language of the Turing machines.

1. It is easy to see that L(M) being infinite is nontrivial (there are Turing machines with a finite
language and Turing machines with an infinite language). Furthermore, it depends only on the lan-
guage: if two Turing machines recognize the same language, then either both have their description
in L1 or none of them do. Hence, Rice’s Theorem immplies that L1 is undecidable.

2. Again, L(M) having size at least 3 is nontrivial, and it depends only on the language. Rice’s
Theorem implies that L2 is undecidable.

3. This is the same.

Exercise 5 : Poisoned Rice - do not eat .
A useless state in a Turing machine is a state that is never entered on any input string.
Let L = {< M > | M has a useless state}. Prove that L is undecidable. Can you use Rice’s Theorem?
Answer:

2

We cannot use Rice’s Theorem since the propety of having a useless state is not does not depend only
on the language: there can be two Turing machines M1 and M2 such that L(M1) = L(M2) but M1 has a
useless state and M2 does not.
However, there is a direct reduction from the halting problem: if a Turing machine does not halt on
input x, then its accepting state is useless. Assume by contradiction that Du decides L, we construct the
following Turing machine:

S := On input < M,w >:

1. Construct the following Turing machine:

Mw := On input x:

a. Execute M on w. If it halts, then accept.

2. Execute Du on < Mw >. If it accepts, then reject. Otherwise, accept.

It is easy to see that Mw ∈ L if and only if M does not halt on input w (since in this case, the accept
state of Mw will never be used and thus is useless). This implies that deciding L allows us to decide
HALTTM , a contradiction.

Exercise 6 : Rice with kayak .
Prove that L = {< M > | M is a Turing machine and L(M) contains a palindrome} is undecidable,
first by using Rice’s Theorem and then without it.
Answer:
Containing a palindrome is a nontrivial property (some Turing machines recognize palindromes, some do
not), and it depends only on the languages (if two Turing machines accept the same language, then either
both of their representations are in L or none is). Using Rice’s Theorem, we deduce that L is undecidable.
Another proof is a reduction. Assume by contradiction that L is decidable and let Dp be a Turing machine
that decides it. We construct the following Turing machine:

S := On input < M,w >:

1. Construct the following Turing machine:

Mw := On input x:

a. If x 6= aba, then reject

b. Run M on w. If it accepts, then accept.

2. Run Dp on < Mw >. If it accepts, then accept; otherwise, reject.

It is easy to see that if M accepts w, then L(Mw) = {aba} and thus Dp will accept < Mw >, which means
that S will accept < M,w >. Conversely, if M rejects w (or loops), then L(Mw) = ∅ and thus Dp will
reject < Mw >, which means that S will reject < M,w >. Hence, S decides ATM , a contradiction.

3

