
Computability and Complexity

Exercises

Time complexity

1 P

Exercise 1 : Connections.
Prove that LC = {< G > | G is a connected undirected graph} is in P.
Answer:
We devise the following algorithm:

1. Check that G is an undirected graph.

2. Mark the first vertex.

3. Repeat until no more vertex is marked:

(a) Scan the edges. For every edge uv such that u is marked and v is unmarked, mark v.

4. If all vertices are marked, accept; otherwise, reject.

Step 1 is polynomial (O(n2)), step 2 is constant. Step 3 can happen at most n times, and does a constant
operation for every edge, thus step 3 is polynomial (O(n3)). Finally, step 4 is polynomial (O(n)).
Furthermore, it is easy to see that the algorithm verifies if a graph is connected: if G is connected, then
all vertices will end up marked; and if G is not connected, then some vertex will be unmarked. Thus, LC

is in P.

Exercise 2 : Isoceles.
Prove that L∆ = {< G > | G is an undirected graph containing a triangle} is in P.
Answer:
The idea is to test all possible triangles, that is, all sets of three vertices. We have the following algorithm:

1. Check that G is an undirected graph with at least 3 vertices.

2. For all sets of three distinct vertices {u, v, w}:

(a) Scan the edges of G. If uv, vw and uw are found, accept.

3. Reject.

It is easy to see that this algorithm will accept a graph containing a triangle, and reject a triangle-free
graph. Now, let us study its complexity. Step 1 is polynomial (O(n2)) and step 3 is constant. Step 2 can
be executed, in the worst case, for every set of 3 vertices, so

(
n
3

)
= (n−2)(n−1)n

6 = O(n3) times. Each
execution is polynomial (O(n2)), so step 2 is polynomial (O(n5)). Thus, L∆ is in P.

Exercise 3 : Modular exponentiation.
Prove that L mod = {< b, e, c, p > | b, e, c, p are binary integers and be ≡ c mod p} is in P.
Answer:
The idea here is to use the fact that (x × y) mod m = ((x mod m) × (y mod m)) mod m. Furthermore,
since the numbers are in binary, we have be = b

∑n
i=0 ei2

i

=
∏n

i=0(b2
i

)ei .
We have the following algorithm:

1

1. Check that there are four binary integers and that p 6= 0. If p = 1, check whether c = 0.

2. Set r := 1 and b := b mod p.

3. For i that goes from 0 to n, do the following:

(a) If ei = 1, then set r := (r × b) mod p.
(b) Set b := (b× b) mod p.

4. Check whether c = r. If so, accept; otherwise, reject.

Remember that the multiplication and modulo operations can be done in polynomial time. Thus, the
algorithm has n executions of one multiplication and two modulo operations, where n is the size of e in
binary. This implies that the algorithm is polynomial. It is easy to check that it computes the modular
exponentiation be mod p, and then check whether the result is c or not. Hence, L mod is in P.

Exercise 4 : Unary is more efficient than binary?! .
In the class, we saw that SUBSET-SUM is NP-complete. However, consider UNARY-SUBSET-SUM, an
instance of SUBSET-SUM where the numbers are written in unary. Prove that UNARY-SUBSET-SUM
is in P.
Answer:
The idea is to convert the input in binary, then simulate a nondeterministic Turing machine that solves
SUBSET-SUM on the converted input. The algorithm is as follows:

1. Convert the input in binary.

2. Simulate a nondeterministic Turing machine that solves SUBSET-SUM.

3. Return the same output that the simulation.

Step 1 is polynomial, and convert the input which is of size n to a O(log(n)) intermediary input for
the simulation. Now, step 2 is polynomial in the nondeterministic Turing machine (since SUBSET-
SUM is in NP), so it is nondeterministically done in O(log(n)k). As we saw in the course, there is a
deterministic Turing machine that simulates our nondeterministic machine with an exponential factor,
so step 2 can be done in O(2log(n)k) = O(nk), that is, step 2 is polynomial. Finally, step 3 is constant.
Thus, UNARY-SUBSET-SUM is in P.

2 NP-completeness

Exercise 5 : Double-SAT .
Prove that D-SAT= {< φ > | φ is a boolean formula with at least two satisfying assignments} is NP-
complete.
Answer:
D-SAT is clearly in NP: a certificate is two assignments of the variables, so a verifier will simply check
that the two assignments are distinct and that they satisfy φ, which is polynomial (alternatively, we can
decide the language by nondeterministically testing all possible pairs of distinct assignments and accepting
if a pair satisfies φ, which can be done in polynomial time).
We then do a reduction from SAT. Let φ(x1, . . . , xn) be a boolean formula over variables x1, . . . , xn. We
define f the following way: let y be a new variable, let f(φ(x1, . . . , xn)) = φ(x1, . . . , xn) ∧ (y ∨ y). It is
easy to verify that f is a polynomial reduction. Assume that φ has a satisfying assignment, then f(φ) has
two satisfying assignments: for both, keep the same values for the xi’s, and then in one assignment we set
y as true and in the second we set y as false. Conversely, if φ does not have a satisfying assignment,
then f(φ) clearly will not have a satisfying assignment either.
The above proves that SAT ≤p D-SAT, and since SAT is NP-complete and D-SAT is in NP, this proves
that D-SAT is NP-complete.

2

Exercise 6 : Partition.
Prove that PARTITION= {< A > | A is a set of integers such that there exists A′ ⊆ A s.t.

∑
a∈A′ a =∑

a∈A\A′ a} is NP-complete.
Answer:
PARTITION is clearly in NP: a certificate is a subset A′ so a verifier will check that

∑
a∈A′ a =∑

a∈A\A′ a, which can be done in polynomial time.
We then do a reduction from SUBSET-SUM. Let (A, x) be an input for SUBSET-SUM, and let s =∑

a∈A a. We define the following reduction: f(A, x) = B = A ∪ {s − 2x}. The reduction is polynomial,
and now we prove that it is correct.
First, assume that there is A′ ⊆ A such that

∑
a∈A′ a = x. Then, we set B′ = A′ ∪ {s− 2x} and we have∑

a∈B′ a =
∑

a∈A′ a+ s− 2x = s− x =
∑

a∈A a−
∑

a∈A′ a =
∑

a∈B\B′ a.
Conversely, assume that there is B′ ⊆ B such that

∑
a∈B′ a =

∑
a∈B\B′ a. Without loss of generality,

we can assume that s − 2x ∈ B′, and thus this partition implies that there is A′ ⊆ A such that s −
2x +

∑
a∈A′ a =

∑
a∈A\A′ a. This, in turn, implies that s − 2x + 2

∑
a∈A′ a =

∑
a∈A a = s and thus∑

a∈A′ a = x.
The reduction being correct, we have SUBSET-SUM ≤p PARTITION and PARTITION is in NP, which
implies that PARTITION is NP-complete.

Exercise 7 : Half-clique.
Prove that HALF-CLIQUE= {< G > |G is an undirected graph with a complete subgraph of order |V (G)|

2 }
is NP-complete.
Answer:
HALF-CLIQUE is clearly in NP: a certificate is a subgraph, so a verifier will check whether the subgraph
is complete and contains half the vertices of G, which is polynomial.
We then do a reduction from CLIQUE. Let (G, k) be an input for CLIQUE, and let n be the order of G.
We define the following reduction:

If k = n
2 : f(G, k) = G;

If k < n
2 : f(G, k) = H where H is the graph constructed by adding to G the complete graph Kn−2k and all

the edges between it and G;

If k > n
2 : f(G, k) = H where H is the graph constructed by adding to G the stable graph In−2k and no edge

between it and G.

It is easy to check that f is polynomial, and that there is a clique of order k in G if and only if there is
a clique of order n

2 in f(G). Thus, CLIQUE ≤p HALF-CLIQUE, which proves that HALF-CLIQUE is
NP-complete.

Exercise 8 : Two cliques.
Prove that TWO-CLIQUES= {< G, k > |G is an undirected graph with two disjoint cliques of order at least k}
is NP-complete.
Answer:
TWO-CLIQUES is clearly in NP: a certificate is two subsets of vertices, so a verifier will check that the
two subsets are disjoint cliques, which can be done in polynomial time.
We then do a reduction from CLIQUE. Let (G, k) be an input for CLIQUE, we define the following
reduction: f(G, k) = (G + G, k) where G + G is the graph made from two disjoint copies of G. The
reduction is polynomial, and it is trivial to see that if there is a clique of size at least k in G, then there
are two disjoint cliques of size at least k in G+G (take the same vertices in both copies of G). Conversely,
assume that there are two cliques of size at least k in G + G (note that they can be in the same copy!),
then each of the cliques has all its vertices in the same copy. Take the same vertices in G, and we get a
clique of size at least k. Thus, the reduction is correct and CLIQUE ≤p TWO-CLIQUES. This implies
that TWO-CLIQUES is NP-complete.

3

Exercise 9 : Stable.
Prove that STABLE= {< G, k > | G has an independent subgraph of order at least k} is NP-complete.
Answer:
STABLE is clearly in NP: a certificate is a subset of vertices, and a verifier will check whether it is
independent and of order at least k, which is polynomial.
We then do a reduction from CLIQUE. Let (G, k) be an input for CLIQUE with n being the order of G,
we define the reduction as follows: f(G, k) = (G, k) (where G is the graph on the same vertices as G and
where e ∈ E(G)⇔ e /∈ E(G)). The reduction is obviously polynomial, and it is easy to see that there is a
clique of order k in G if and only if there is an independent set of order k in G (in both directions, take the
same set of vertices). This implies that CLIQUE ≤p STABLE and thus that STABLE is NP-complete.

Exercise 10 : Subgraphs.
Prove that SUBGRAPH-ISOMORPHISM = {< G,H > | H is a subgraph of G} is NP-complete.
Answer:
SUBGRAPH-ISOMORPHISM is clearly in NP, since a certificate is a subset S of vertices of G, so a
verifier will simply check if G[S] is isomorphic to H, which can be done in polynomial time. Furthermore,
CLIQUE ≤p SUBGRAPH-ISOMORPHISM: from an input (G, k) for CLIQUE, we can construct (G,Kk)
an input for SUBGRAPH-ISOMORPHISM. The reduction is obviously polynomial and correct, and as
such SUBGRAPH-ISOMORPHISM is NP-complete.

Exercise 11 : 0-1-matrices.
Let M be a square matrix that has values in {0, 1}. We say that M is simplifiable if it is possible to
transform 1’s to 0’s such that every row and column of M contains exactly one 1.
Prove that SIMPLIFIABLE = {M | M is a simplifiable matrix} is NP-complete.
Answer:
SIMPLIFIABLE is clearly in NP: a certificate is a list of the 1’s that can be switched to 0’s, so a verifier
only needs to switch the 1’s and verify that each row and each column contains exactly one 1.
We then do a reduction from UHAMPATH. Let G be an undirected graph, we let f(G) be the adjacency
matrix of G. It is obvious that this reduction is polynomial. Furthermore, it is easy to see that there is
a hamiltonian path in G if and only if f(G) is simplifiable: switch all the 1’s corresponding to the edges
that are not in the hamiltonian path and the matrix will have exactly one 1 in each row and column; and
conversely use the edges that correspond to the 1’s that are not switched and you will get a hamiltonian
path.
This proves that UHAMPATH ≤p SIMPLIFIABLE, and thus that SIMPLIFIABLE is NP-complete.

Exercise 12 : Domination.
Prove that DOMINATING-SET= {< G, k > |G has a dominating set of size at most k} is NP-complete.
Answer:
DOMINATING-SET is clearly in NP: a certificate is a subset D of vertices, so a verifier will simply
check that D is dominating and that |D| ≤ k.
We then do a reduction from VERTEX-COVER. Let (G, k) be an input for VERTEX-COVER. We create
the following graph G′: V (G′) = V (G)∪{xuv | uv ∈ E(G)} and E(G′) = E(G)∪{uxuv, vxuv | uv ∈ E(G)}
(in other words, we replace every edge of G by a triangle). Now, we let f(G, k) = (G′, k). The reduction
is polynomial, now let us prove its correctness.
First, note that a vertex-cover set is a dominating set, so the first side of the reduction is trivial. Con-
versely, assume that there is a dominating set S of size at most k in G′. Note that, if some xuv is in S,
then it can be replaced by either u or v and we will still have a dominating set of the same size (since
the only vertices dominated by xuv are itself, u and v, so they still would be dominated). Thus, we can
assume that S does not contain any xuv. Now, every edge is covered by S (since if an edge uv was not
covered, then xuv would not be dominated, a contradiction), and thus S is a vertex-cover set of G of size
at most k. Thus, VERTEX-COVER ≤p DOMINATING-SET.
This implies that DOMINATING-SET is NP-complete.

4

Exercise 13 : 6=-assignments.
For a given boolean formula in 3-CNF, a 6=-assignment of its variables is an assignment where, in every
clause, there are at least two literals with unequal truth values. Equivalently, a 6=-assignment satisfies φ
without having all three litterals set as true in any clause.

1. Prove that the negation of a 6=-assignment is also a 6=-assignment.

2. Let 6=-3-SAT be the language of all boolean formulas in 3-CNF that have a 6=-assignment. Find a
reduction of 3-SAT to 6=-3-SAT.

3. Prove that 6=-3-SAT is NP-complete.

Answer:

1. In a 6=-assignment for φ, all the clauses have value true, but at least one litteral in each clause
has value false. Thus, if we take the negation, there is one litteral in each clause that has value
true, which implies that all clauses have value true. Furthermore, the litterals that had value true
(of which there is at least one for each clause) now have value false. Thus, the negation is also a
6=-assignment for φ.

2. Let φ(x1, . . . , xn) be a boolean formula in 3-CNF that contains ` clauses. We define the following
reduction: for each clause, we create a variable yi, and we have a new global variable z; each clause
Ca = (xi∨xj∨xk) (w.l.o.g.) is transformed into two new clauses (xi∨xj∨ya)∧(ya∨xk∨z). Let us
call f(φ(x1, . . . , xn)) = φ′(x1, . . . , xn, y1, . . . , y`, z) the 3-CNF constructed this way. This reduction
is polynomial, now let us prove that it is correct.

First, assume that there is an assignment satisfying φ, then we set the values of xi’s in φ′ as the
same than in φ, and we set z =false. Now, we must make sure that at least one litteral has
value false in each clause. Let Ca = (xi ∨ xj ∨ xk) (w.l.o.g.), then we have the two clauses
(xi ∨xj ∨ ya)∧ (ya ∨xk ∨ z). If both xi and xj have value false, then we set ya as true; otherwise
we set it as false: the first clause has value true and at least one of its litterals has value false.
Furthermore, since z =false, the second clause has at least one litteral with value false, and it
will also be verified. This is depicted in the following table:

Value of (xi, xj) Value of ya Value of xk
true and true false no impact since ya =true and z =false
true and false false no impact since ya =true and z =false
false and false true true since Ca has value true

Thus, we have a 6=-assignment for φ′.

Now, assume that there is a 6=-assignment for φ′. We can assume that z =false, since if it is
not the case then we can take the opposite assignement, which is also a 6=-assignment by the first
question. For each clause Ca, if ya =true then we necessarily have xk =true; and otherwise we
necessarily have at least one of xi or xj with value true (since otherwise, one of the two clauses
created from Ca would have value false). Thus, in this assignment, for every clause, at least one
litteral has value true, and thus the same assignment for the xi’s is a satisfying assignment for φ.

The reduction being correct, we have 3-SAT ≤p 6=-3-SAT.

3. 6=-3-SAT is clearly in NP: a certificate is an assignment, so a verifier will have to check whether it
is a 6=-assignment (checking that every clause has value true and contains at least one litteral with
value false), which is polynomial. Furthermore, we know by the previous discussion that 3-SAT
≤p 6=-3-SAT. Since 3-SAT is NP-complete, this implies that 6=-3-SAT is NP-complete.

Exercise 14 : Cutting as much as we can.
Prove that MAX-CUT= {< G, k > | G has a cut of size at least k} is NP-complete (hint: reduce from
6=-3-SAT, G may contain multiedges).
Answer:

5

MAX-CUT is clearly in NP: a certificate is a subset S of vertices, so a verifier only has to check that
there are at least k edges between vertices in S and vertices in V (G)\S, which can be done in polynomial
time.
We then do a reduction from 6=-3-SAT. Let φ(x1, . . . , xn) be a boolean formula in 3-CNF, and let ` be the
number of clauses in φ. We construct the graph G the following way: we create two vertices vi and vi for
every variable xi; then for each clause we link the three vertices associated with its litterals as a triangle
(so if, for example, Ca = (xi ∨ xj ∨ xk), we have the edges vivj, vivk and vjvk); finally, for each variable
xi, let mi be the number of times it appears (either as xi or as xi) in a clause, we add mi multiedges
between vi and vi. We let f(φ) = (G, 5`). This reduction is polynomial, let us prove its correctness.
First, assume that there is a 6=-assignment for φ. We set S = {vi | xi = true} ∪ {vi | xi = false}
(that is, the vertices corresponding to the litterals with value true). Now, let us count the edges crossing
between S and V (G) \ S. On the first hand, all the multiedges between vi’s and vi’s will be counted, and
there are 3` such multiedges (since there are ` clauses of 3 litterals). On the other hand, every clause
contains at least one litteral with value true and one litteral with value false, so for every clause there
are exactly two edges from the triangle that cross from S to V (G) \ S (since one (resp. two) litterals are
in S and two (resp. one) are not in S), so there are 2` such edges between S and V (G) \ S. In total,
there are 5` edges between S and V (G) \ S, which is what we wanted.
Conversely, assume that there is a cut with at least 5` edges crossing it. Note that, if both vi and vi are on
the same side of the cut, then we can put them on different sides without decreasing the number of edges
crossing the cut. Indeed, assume that there are two vertices vi and vi that are on the same side of the cut,
assume that xi is in a clauses and that xi is in b clauses, so there are mi multiedges between vi and vi,
and a+b edges incident with vi and vi that cross the cut; furthermore we have a+b = 2mi. Putting vi on
the other side of the cut would let us have b+mi edges crossing it; and putting vi would let us have a+mi

edges crossing it. If doing both did decrease the number of edges crossing the cut, then we would have
both a+mi < a+ b and b+mi < a+ b, thus we would have a+ b+ 2mi < 2(a+ b), that is, 2mi < a+ b,
a contradiction (since a+ b = 2mi). Thus, we can assume that vi and vi are on opposite sides of the cut.
This implies that the 3` multiedges contribute to the cut, and thus that the clause gadgets contribute to
at least 2` to the cut. This implies that, for every triangle (clause gadget), two edges contribute (since it
is impossible to have all three edges from a triangle crossing a cut). By setting the vertices on one side
of the cut as true and the others as false, we have a 6=-assignment for φ.
Thus, 6=-3-SAT ≤p MAX-CUT, which implies that MAX-CUT is NP-complete.

Exercise 15 : Cutting exactly as much as we need .
Prove that EXACT-CUT= {< G, k > | G has a cut of size exactly k} is NP-complete.
Answer:
EXACT-CUT is obviously in NP: the argument is the same than for MAX-CUT. Now, we do a reduction
from MAX-CUT.
Let (G, k) be an input for MAX-CUT and let e = |E(G)|. We create the graph G′ as the disjoint union
of G and a star K1,e, and let f(G, k) = (G′, k + e). This reduction is clearly polynomial. Furthermore,
if there is a cut of size ` ≥ k in G, then we can find a cut of size k + e in G′: take the same cut in the
copy of G, and take k + e− ` edges in the star by putting the center and `− k leaves on one side of the
cut and k + e − ` leaves on the other side (this is possible since ` ≥ k). Conversely, if there is a cut of
size exactly k + e in G′, then there are at most e edges crossing the cut that are in the star, and as such
there are at least k edges crossing the cut in G, and so we have a cut of size at least k in G. This proves
that MAX-CUT ≤p EXACT-CUT.
Altogether, this proves that EXACT-CUT is NP-complete.

Exercise 16 : 3-color .
Prove that 3-COLOR= {< G > | G is an undirected graph that has a 3-colouring} is NP-complete.
Answer:
3-COLOR is clearly in NP: a certificate is an assignment of colours 1, 2 or 3 to the vertices, so a verifier
will check that every vertex is coloured and that no two adjacent vertices have the same colour, which is
polynomial.
We then do a reduction from 3-SAT, so we will construct a graph from a boolean formula. The idea is to

6

have a "palette" gadget that is a triangle. One vertex, called u>, will be used to find which variables will
be assigned the value true; another vertex, called u⊥, will be used to find which variables will be assigned
the value false.
Let φ(x1, . . . , xn) be a boolean formula in CNF with clauses of size 3. We create the graph G as follows:

1. Create a triangle with vertices u>, u⊥ and u;

2. For every variable xi, create two vertices vi and vi, and link both these vertices to u;

3. For every clause Ca, use OR-gadgets to link its three variables, and add an edge between the exit of
the gadgets and u⊥ and u.

This is depicted in the following picture:

Ca = (xi ∨ xj ∨ xk)

vi vj vkvi vj vk

u> u⊥

u

OR-gadget for
xi ∨ xj

OR-gadget for
(xi ∨ xj) ∨ xk

It is easy to see that this reduction is polynomial, since we create 2n + 6m + 3 vertices (where n is the
number of variables and m the number of clauses in φ), and thus a polynomial number of edges. Now,
we need to prove that φ is satisfiable if and only if G is 3-colourable. We will call the three colours >, ⊥
and B.
First, assume that φ is satisfiable. We colour the graph the following way: if xi has the value true, then
colour vi with > and vi with ⊥; also colour u> with >, u⊥ with ⊥ and u with B. Note that, since at
least one of the three variables of a clause is true, we can colour the end vertex of the OR-gadgets with
>. The other vertices within the gadget can then be coloured without creating any conflict.
Conversely, assume that there is a 3-colouring of G. Without loss of generality, assume that u> has colour
>, u⊥ has colour ⊥, and u has colour B (if this is not the case, we rename the colours). Note that all
vertices vi and vi have colours in {>,⊥} and that vi and vi cannot have the same colour. Thus, we assign
the value true to xi if and only if vi is coloured with >. Now, we prove that this assignment satisfies
φ. Assume by contradiction that there is a clause Ca = (xi ∨ xj ∨ xk) (without loss of generality) that is
not satisfied. This means that vi, vj and vk have colour ⊥. However, the end vertex of the OR-gadget
for Ca has colour > (since it is linked with u⊥ and u), which implies that we have the following colour
assignment:

7

⊥ ⊥ ⊥

⊥ B

>

As we can see, the intermediary OR-gadget for Ca is a triangle, but all its vertices are neighbours of a
vertex coloured with ⊥, a contradiction. Thus, every clause is satisfied, and thus φ is satisfied.
Altogether, this proves that 3-SAT ≤p 3-COLOR, and thus 3-COLOR is NP-complete.

Exercise 17 : Clique in a restricted family .
Prove that REG-CLIQUE = {< G, k > |G is a regular undirected graph with a clique of order at least k}
is NP-complete.
Answer:
Since CLIQUE is in NP, REG-CLIQUE is also in NP. We then do a reduction from CLIQUE. First,
note that if k ∈ {1, 2} then the language is trivial (if k = 1 then we just need to check that there is a
vertex, and if k = 2 then we just need to check that there is an edge), so if k ∈ {1, 2} then the reduction
consists in determining if G contains either a vertex or an edge, and then creating a regular graph such
that the answer is the same (for k = 1 either a graph with no vertex or with a single vertex, for k = 2
either a graph with no vertex or K2). In the following, we will assume that k ≥ 3.
Let (G, k) be an input for clique, and let ∆ be the maximum degree of G. We construct the following
graph G′: first, we create ∆ disjoint copies of G, noted G1, G2, . . . , G∆; then, for every vertex v such that
d(v) < ∆, we create ∆ − d(v) supplementary vertices a1

v, . . . , a
∆−d(v)
v that are linked to every copy of v

in G1, . . . , G∆. It is easy to see that G′ is ∆-regular: every vertex v in a copy of G has d(v) neighbours
in its copy, and ∆− d(v) neighbours (the aiv); and d(aiv) = ∆ since it has one neighbour in each of the ∆
copies of G. Thus, we have the following reduction: f(G, k) = (G′, k). It is easy to see that the reduction
is polynomial, since ∆ = O(n) and as such G′ contains O(n2) vertices (and thus a polynomial number of
edges).
We now prove that the reduction is correct. First, assume that G has a clique of order at least k. Then,
by taking the same vertices in any Gi, it is easy to see that G′ has a clique of order at least k. Conversely,
assume that G′ has a clique of order at least k. Since all the Gi’s are disjoint, the clique cannot contains
vertices from different Gi’s. Furthermore, assume that there is a vertex aiv that belongs to this clique; then
since k ≥ 3 there are at least two other vertices in the clique, however all neighbours of aiv are disjoint
copies of v, a contradiction. Thus, the clique is contained in a single Gi. By taking the same vertices,
there is a clique of order at least k in G. Thus, our reduction is correct and CLIQUE ≤p REG-CLIQUE.
This implies that REG-CLIQUE is NP-complete.

Exercise 18 : A small break .
This is not an exercise. Give a read to the paper Minesweeper is NP-complete, available here:

http://www.minesweeper.info/articles/MinesweeperIsNPComplete.pdf

8

