Computability and Complexity

Homework

Finite automatas and regular languages

Exercise 1 : Reverting.

Prove that if L is a regular language, then L^R (the language consisting in all the words in L in reverse) is regular.

You may reuse this result in some of the following exercises.

Exercise 2 : Multiples of 4.

Let $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ (thus Σ^+ is the set of nonnegatives integers written in decimal). Prove that $L = \{w \in \Sigma^* \mid w \equiv 0 \mod 4\}$ (the language of the multiples of 4) is regular.

Exercise 3 : Intersectionality.

Prove that the regular languages are closed under intersection (*i.e.*, if L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is a regular language).

Exercise 4 : Comparing sums.

Let $\Sigma_4 = \left\{ \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \dots, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \right\}$. Thus, any word w on Σ_4^* induces four binary numbers, called

 w_1, w_2, w_3, w_4 (from top to bottom).

Prove that $L = \{ w \in \Sigma_4^* \mid w_1 + w_2 = w_3 + w_4 \}$ is regular.

Exercise 5 : One state to accept them all.

Prove that every nondeterministic finite automata can be converted to an equivalent one that has a single accept state.

Exercise 6 : Pumping.

Use the pumping lemma to prove that $L = \{a^m b^n \mid m > n\}$ is not regular.

Exercise 7 : Huey, Dewey and Louie.

Let $\Sigma_2 = \left\{ \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$. Thus, any word w on Σ_2^* induces two binary numbers, called w_1 and w_2 (from top to bottom).

- 1. Prove that $L = \{w \in \Sigma_2^* \mid 3w_1 = w_2\}$ (*i.e.*, where the bottom row is three times the top row) is regular.
- 2. Prove that $L = \{w \in \Sigma_2^* \mid w_1 = w_2^R\}$ (*i.e.*, where the bottom row is the reverse of the top row) is not regular.

Instituto de Matemáticas