
Computability and Complexity

Homework

Turing machines, decidability and complexity

Exercise 1 : The complexity of graph colouring .
Let G(V,E) be a graph with vertex set V and edge set E. A k-colouring of the graph is a function
α : V → {1, . . . , k} such that, for any two vertices u and v, if uv ∈ E then α(u) 6= α(v). In natural
language, this means that we associate integers to vertices, and that two adjacent vertices cannot have
the same associated integer.
The goal of this exercise is to study the complexity of deciding if, for a given graph G and a given integer
k, there exists a k-colouring of G. Such a problem is called k-COLOR, and it is formally defined as
follows:

k-COLOR = {< G, k > | G is an undirected graph that has a k-colouring}.

This is a classical problem in complexity theory, and we already proved in the class that 3-COLOR is
NP-complete. We will now study its complexity for other values of k, as well as see if restricting the class
of G can change the complexity.

1. Prove that 1-COLOR is in P.

2. Prove that 2-COLOR is in P. Hint: What graphs are 2-colourable?

3. Let k ≥ 3. Prove that k-COLOR is in NP.

4. Find a polynomial transformation that, from any graph G, constructs a graph G′ such that G
is 3-colourable if and only if G′ is 4-colourable. Make sure to prove that the transformation is
polynomial and correct, and draw an example.

5. Deduce from the previous two questions the complexity class of 4-COLOR.

6. Generalize your construction from question 4 to any integer k > 3. Deduce from this the complexity
class of k-COLOR.

We are now studying 3-COLOR. We know that this problem is NP-complete when G is a general graph.
However, several NP-complete problems become polynomial when restricted to particular graph classes.
An interesting class is the class of planar graphs. Formally, planar graphs are the class of (K5,K3,3)-minor-
free graphs. Informally (but usefully!), they are the graphs that we can draw without any edge crossing
another. Such graphs are interesting since their structure is well constrained, and several NP-complete
problems have polynomial algorithms for planar graphs, such as MAX-CUT or Graph Isomorphism.
We will study the complexity of 3-COLOR restricted to planar graphs.

7. Consider the graph H depicted on Figure 1. Prove the following properties of H:

(a) For any 3-colouring α of H, we have α(x) = α(x′) and α(y) = α(y′).
(b) There exist two 3-colourings α1 and α2 of H such that α1(x) = α1(y) and α2(x) 6= α2(y).

8. Use H to polynomially construct, for any graph G, a planar graph G′ such that G has a 3-colouring
if and only if G′ has a 3-colouring.

9. Deduce from the previous question the complexity class of 3-COLOR restricted to planar graphs.

Answer:
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Figure 1: A graph H with an interesting property.

1. A graph is 1-colourable if and only if it is an independent set. Thus, there is a polynomial algorithm
solving 1-COLOR: simply test whether there is an edge in the graph (and answer No) or not (and
answer Yes).

2. A graph is 2-colourable if and only if it is bipartite. Thus, answering 2-COLOR on G is exactly
equivalent to deciding whether G is bipartite. An algorithm answering this is a BFS of the graph,
which is polynomial. Thus, there is a polynomial algorithm solving 2-COLOR: apply a BFS and
greedily colour every vertex encountered. If, at the end, more than two colours were used, answer
No; otherwise, answer Yes.

3. Let C be a certificate for k-COLOR. Namely, C is a k-colouring, that is, a function assigning a
colour to every vertex. Here is an algorithm testing whether this certificate is valid: simply verify
that, for every colour i, no two vertices coloured with i are adjacent. This algorithm is clearly
polynomial (it executes in O(k|V |2) steps), which implies that k-COLOR is in NP.

4. Let G(V,E) be a graph. We construct G′(V ′, E′) the following way:

• V ′ = V ∪ {s}
• E′ = E ∪ {su | u ∈ V }

This transformation is polynomial, since |V ′| = |V |+ 1 and |E′| = |E|+ |V |.
Assume that G has a 3-colouring α. It is easy to construct a 4-colouring α′ of G′: α′(u) = α(u) for
u ∈ V and α′(s) = 4. Conversely, assume that G′ has a 4-colouring α′. Then, by our construction,
α′(s) 6= α′(u) for every u ∈ V . Thus, by renaming the colours if necessary, we can have α′(s) = 4,
and now by having α(u) = α′(u) we obtain a 3-colouring α of G.

5. The transformation described in the previous question is a polynomial reduction from 3-COLOR to
4-COLOR. Since we also proved that 4-COLOR is in NP, and that 3-COLOR is NP-complete,
this implies that 4-COLOR is NP-complete.

6. It is easy to generalize the construction for any k > 3:

• V ′ = V ∪ {s1, . . . , sk−3}
• E′ = E ∪ {usi | u ∈ V, i ∈ {1, . . . , k − 3}} ∪ {sisj | i 6= j, i, j ∈ {1, . . . , k − 3}}

In other words, we create a clique of k − 3 vertices that are linked to every other vertex in V . The
graph we obtain has a k-colouring if and only if G has a 3-colouring. Going from the 3-colouring
to the k-colouring is easy (simply assign colours 4, . . . , k to the si); and conversely all the si have
a different colour (since they are a clique) and have a different colour from all vertices in V , so by
renaming the colours if necessary we can have the colours 1, 2 and 3 to vertices in V which gives
us a 3-colouring. This reduction, combined with the fact that k-COLOR is in NP (trivial), proves
that the problem is NP-complete.
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7. This is a case analysis. I am not doing it. Just try all possible 3-colourings (taking symmetry into
account, there are only a few cases to consider), it works.

8. This construction is quite complicated to write, but quite easy to understand. The idea is to start
from a graph G and obtain a planar graph G′ such that G is 3-colourable if and only if G′ is
3-colourable. The construction is the following:

• Place all the vertices from G, say v1, . . . , vn, in line.
• Draw every edge vivi+1.
• For all other edges vivj (with i < j), do the following:

– Use H to "invert" the positions of vi and vi+1 (associate them with x and y, and their
inverted equivalents one level down will be x′ and y′). For all other vertices, use a basic
template to get them down one level too.

– Iterate until vi and vj are neighbours in the line. Link them, then return vi to its initial
position by using the same process.

This is depicted on Figure 2. Now, it is easy to see that this transformation is polynomial: we add
at most |V | such "intermediate levels" for every edge, and each level contains one copy of H (9 new
vertices and 24 new edges) and |V | − 2 basic templates (2 new vertices and 5 new edges for each);
plus the levels with the vji (which are obviously polynomial in size). Thus, every intermediate level
is of size θ(|V |), and we add at most |V ||E| of those levels. So the graph G′ that we obtain is of
polynomial size compared to the original graph G. Furthermore, it is planar, since no two edges
cross in our construction.
Now, assume that G has a 3-colouring α. It is easy to see that we can construct a 3-colouring α′ of
G′: for every i and j we have α′(vji ) = α(vi) (which is always possible due to the properties of H
and of the basic template), and we colour every vertex in the copies of H and of the basic template
any way that is possible. We will not have a problem since vki vkj ∈ E′ if and only if vivj ∈ E.

Conversely, assume that G′ has a 3-colouring α′. It is easy to see that if vji and vj+1
i are linked

by a basic template, then α′(vji ) = α′(vj+1
i ). Furthermore, if vji , v

j
i+1, v

j+1
i and vj+1

i+1 are linked
through a copy of H, then they are respectively x, y, x′ and y′. By the properties of H, we have
α′(vji ) = α′(vj+1

i ) and α′(vji+1) = α′(vj+1
i+1 ), and they can be indifferently of the same colours or of

different colours. Thus, for every i and j, we have α′(vji ) = α′(v0i ) where the v0i ’s are the initial
row of vertices. Thus, we can construct a 3-colouring α of G by having α(vi) = α′(v0i ). Again, we
will not have any problem since vki vkj ∈ E′ if and only if vivj ∈ E.

9. Since 3-COLOR is in NP, its restriction to planar graphs is in NP too. The previous question gave
us a polynomial reduction from 3-COLOR to 3-COLOR restricted to planar graphs. We know that
3-COLOR is NP-complete, and thus 3-COLOR restricted to planar graphs is NP-complete too.
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Figure 2: An example of the reduction from 3-COLOR to PLANAR-3-COLOR. Here there is an edge
v1v3, so we have to use H to get v1 next to v3.
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