
Internship Report:

Octal Games on Graphs

Antoine Dailly
Tutors: Éric Duchêne and Aline Parreau

GOAL � LIRIS

Abstract. Combinatorial games are two-player games with perfect in-
formation, without chance, loops or draws, and where the last move
entirely determines the winner. Octal games are combinatorial games
played on heaps of counters whose rules are entirely determined by an
octal code. During my internship, I de�ned an extension of octal games
to graphs and studied two of these games on trees and grids, using a
program to help conjecture a result before formally proving it.

Résumé Les jeux combinatoires sont des jeux opposant deux joueurs, à
information parfaite, sans hasard, boucles ou match nul, et où le dernier
coup joué détermine entièrement le vainqueur. Les jeux octaux sont une
famille de jeux combinatoires se jouant sur des piles d'objets, et dont
les règles sont entièrement déterminés par un code octal. Durant mon
stage, j'ai dé�ni une extension des jeux octaux sur les graphes et étudié
deux de ces jeux sur les arbres et les grilles, utilisant un programme pour
conjecturer un résultat avant de le démontrer formellement.
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Introduction

Games are a huge part of human history. However, formal mathematical
study of games is a relatively recent �eld. Use of the probability theory for the
study of gambling games has arisen during the XVI-XVIIth century, and has
recieved a lot of attention in the XXth century, with the work of Cournot, Borel,
von Neumann, Nash... and the other researchers who developed the game theory.

Some games lend themselves to a study over a more particular theory. Two-
player games with perfect information, without chance, loops and draws, and
where the last move entirely determines the winner, are called combinatorial
games. Two winning conventions are de�ned: under the normal convention, the
last player to play a move wins; while under themisère convention, the last player
to play a move loses. During the XXth century, a formal theory has arisen to
study these games, with powerful mathematical tools.

The �rst combinatorial game that has been studied is the game of nim, in
1901 [Bouton, 1901]. In a game of nim, there are several heaps of counters. The
two players must alternatively remove counters from exactly one heap, the winner
under the normal convention being the player who removes the last counter from
the last heap.

During the next few years, several games were studied by mathematicians.
Most of these games were speci�c in that both players always had the same
moves available to them (as opposed to games like chess). Such games are called
impartial games.

In 1935 [Sprague, 1935] and 1939 [Grundy, 1939], Sprague and Grundy inde-
pendently proved that every impartial game is equivalent to a certain position
of nim. This gave way to a more systematic study of games, by giving them
numerical values which are called Grundy values, followed by the development
of formal tools by mathematicians such as Conway [Conway, 1976].

Octal games are a family of impartial combinatorial games, which are rep-
resented by an octal code. Octal games are played on heaps of counters, like
nim, and their code entirely determines how many and in which conditions the
counters can be taken. Many octal games have been studied and solved, even
though some of them are still open [Berlekamp et al., 2001].

Combinatorial games are a formal tool which can have various applications,
such as network security or resource allocation. Besides, it is a vast �eld of
research with many open problems, in correlation with other domains such as
graph theory or algebra.

This internship, which took place in the GOAL (Graphes, algOrithmes et
AppLications) team, in the LIRIS laboratory at Université Claude Bernard Lyon
1, extends the concept of octal games from heaps to the more complex structure
of graphs. Indeed, as more and more octal games are being solved, leading to
the conjecture that the sequence of the Grundy values of any octal game is
eventually periodic, it becomes interesting to examine how these games behave
on more complex structures. Graphs are a natural candidate for extending the
de�nition of octal games.
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In the �rst section of this report, we will introduce the concept of combina-
torial games and, through illustrated examples, de�ne some of the tools which
have been used during the internship. The second section will conclude the state
of the art by de�ning and illustrating octal games.

The third and fourth sections will form the bulk of the report, being a sum-
mary of the contributions this internship brought to the domain. The third
section will explain results for the 0.03 game, which consists in taking an edge
from the graph without disconnecting it, on various classes of graphs, such as
forests and grids. We will also detail an algorithm we implemented to help us
to formulate the result on 3× n grids, and which makes us state an interesting
conjecture. The fourth section will focus on the 0.33 game, which consists in
taking a vertex or an edge from the graph without disconnecting it, on some
classes of trees.

1 Combinatorial Games

1.1 De�nitions

Combinatorial games constitute a class of games with a strict de�nition. To
be quali�ed as a combinatorial game, a game must meet the following conditions:

De�nition 1 [Albert et al., 2007] A game is a combinatorial game if its rules
meet the following conditions:

1. There are exactly two players, usually called Left and Right, who alternate
moves;

2. There is no chance involved;
3. There is perfect information: both players know exactly which moves are

available to them and to their opponent, and the history of moves played so
far;

4. The game must end;
5. The last move entirely determines who the winner is, and there can be no

draw.

Most of the common board and card games are excluded of the �eld of com-
binatorial games. For example, the �rst condition excludes any game requiring
more (resp. less) than two players, such as French tarot (resp. such as solitaire);
as well as any game where a player can play multiple times in a turn. The sec-
ond condition excludes any game with dice, such as MonopolyTM; as well as any
game with shu�ing cards, such as bridge. The third condition excludes any game
with imperfect information, such as poker. The fourth condition will exclude any
game where players can engage in loops, such as chess. The �fth condition ex-
cludes any game where the winner is determined with a score, such as go; as well
as any game where draws are possible, such as tic-tac-toe.

However, there are still many games which enter the de�nition, and more
can be created. Moreover, some of the games previously excluded can still be
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studied thanks to the tools developed for studying combinatorial games! This is
the case for the endgames of go, or for some scoring games such as dots&boxes.

The �fth condition tells us that the last move (which will always happen:
thanks to the fourth condition, we know that the game will end) will determine
the winner. Speci�cally, there are two di�erent winning conventions:

� The normal convention, under which the player who plays the last move
wins the game;

� The misère convention, under which the player who plays the last move loses
the game.

One could think that those two conventions are similar, but they are actually
quite di�erent. Most of the tools used to study games under the normal con-
vention do not apply under the misère convention. Consequently, most of the
results in the �eld of combinatorial games hold under the normal convention,
although some tools exist to try and tackle some classes of combinatorial games
under the misère convention.

1.2 Impartial games

Let us see an example of combinatorial game: cram [Gardner, 1974]. This
will allow us to introduce general concepts that will be used later on.

A game of cram takes place on a grid, or on part of a grid. Both players will
alternate placing dominoes on it, either vertically or horizontally. As we consider
the game under the normal convention, the �rst player unable to place a domino
loses the game.

Figure 1 shows an example of a game of cram. Both players alternate placing
dominoes. In this example, the second player wins, as he is the last of the two
players to place a domino.

Fig. 1. A game of cram.

In this report, we will indi�erently use the terms game and position to de-
scribe a certain con�guration of a game. Consequently, each of the boards from
Figure 1 could be called either a game or a position.

De�nition 2 [Albert et al., 2007] We de�ne the options of a game as all the
positions that can be reached from it by any player.

Figure 2 shows an example of a game G, along with its options G1, G2, G3

and G4.



6

G

has for
options

G1 G2 G3 G4

Fig. 2. The options of a game of cram.

Now, let us consider the grid shown in Figure 3. As we can see, the �rst
player is able to place a domino, resulting in a grid with only one square left.
Thus, the second player will be unable to place a domino on it, and will lose the
game. So this game is a winning position for the �rst player, which we call an
N -position (N stands for Next).

Fig. 3. A game of cram advantaging the �rst player, i.e. an N -position.

Now, let us consider the grid shown in Figure 4. We can see that wherever the
�rst player places his domino, the second player will be able to place a second
domino. As four squares out of the �ve will have been taken after those two
turns, the �rst player will be unable to place another domino, and thus he will
lose the game. So this game is a winning position for the second player, which
we call a P-position (P stands for Previous).

Fig. 4. A game of cram advantaging the second player, i.e. a P-position.

cram is particular in that both players always have exactly the same options.
Such games are called impartial games, in opposition to partizan games, where
players may have di�erent options available to them.

De�nition 3 [Albert et al., 2007] A combinatorial game is called an impartial
game if, for any position of the game, both players have exactly the same options
available to them.

De�nition 4 [Albert et al., 2007] A combinatorial game which is not an impar-
tial game is called a partizan game.

Partizan games may be games where each player controls his own pieces, such
as chess, but there are also partizan versions of impartial games. An example is
domineering, which is a partizan cram: as in cram, players successively place
dominoes on a grid, but unlike cram, one of the players can only play horizontal
dominoes, while the other can only play vertical dominoes.

As we are not going to study partizan games, we are not going to expand on
them.
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Instead, we can now introduce the concept of game graph. This is a tool that
theoretically allows to study games, but it is not much used in practice due to
huge computing costs.

De�nition 5 [Albert et al., 2007] Given an impartial game G, the game graph
of G is de�ned as the directed graph where every vertex is a position reachable
from G, and where for every vertices u and v, the edge uv exists if and only if,
v is an option of u.

Figure 5 shows a game graph for the cram game. It is constructed inductively
from the original game, by playing every available move, and continuing to do
so until no moves are left.

Fig. 5. A game graph for a game of cram.

We notice that if the �rst player can play to a P-position, he will ensure
that the second player will lose. Otherwise, the �rst player can only play to
N -positions, thus always allowing the second player to win.

In graph theoretical words, the P-positions constitute a kernel of the game
graph (i.e. an independent and dominating1 set).

This gives us an algorithm (Algorithm 1) to determine the outcome of any
given game, by using their game graph.

Thanks to the fact that combinatorial games are �nite and do not loop, this
algorithm ends and will always compute the outcome of a game. This can be
applied to any impartial game. However, since the size of the game graph can
be exponential, it is important to try and solve the games mathematically.

Figure 6 shows the game graph of Figure 5 after applying the algorithm.
Thus, we know the original position is an N -position.

The �niteness of this algorithm gives us the following proposition:

1 A vertex u dominates another vertex v if there is an arc from v to u.
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Algorithm 1: ComputeOutcomeFromGameGraph
Data: The game graph G
Result: The outcome of the game
while the root is not marked do

mark every sink with P
for every vertex u do

if a vertex v such that uv is an edge of G is marked P then
mark u with N

if the root has been marked then
return its mark

delete every marked vertex

N N

P

N

P

Fig. 6. The game graph from Figure 5 marked with Algorithm 1.

Proposition 6 [Albert et al., 2007] If, from a position, there exists a move lead-
ing to a P-position, then the original position is an N -position.

Otherwise, the original position is a P-position.

Which, in turn, implies that:

Proposition 7 [Albert et al., 2007] Any impartial game belongs to exactly one
of two outcome classes:

1. N if the �rst player wins whatever the second player does;
2. P if the second player wins whatever the �rst player does.

1.3 Sums and values

The game of cram has an interesting property: some of its positions can be
seen as the conjunction of smaller positions. For example, the game shown at
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the left of Figure 7 can bee seen as the disjunction of the games shown at the
right of the �gure.

G

≡

G1

+

G2

Fig. 7. A game of cram can be seen as several smaller games of cram.

This lets us introducing the concept of disjunctive sum, which will be largely
used to study games by breaking large positions into smaller components.

De�nition 8 [Albert et al., 2007] The disjunctive sum G+H of two games G
and H is the game where, at his turn, a player must choose to play one move in
exactly one of the games G and H. Under the normal convention, the winner is
the last player able to play a move.

For example, in the disjunctive sum shown Figure 8, a player can choose to
play on either G or H.

G

+

H G1

+

H

G

+

H1

G
+

H2

Fig. 8. The disjunctive sum of two games of cram and its options (minus the symme-
tries).

Proposition 9 [Albert et al., 2007] Let G be a game with an outcome class O ∈
{N ;P}. If H is a game with the outcome class P, then G+H has the outcome
class O.

This comes from the fact that, when playing on G + H, the player with
a winning strategy on G will be able to nullify his opponent's moves in H: if
his opponent plays on G, he applies his strategy for this game, otherwise, his
opponent plays on H, he only has to apply the winning strategy on H. As H is
a P-position, the player with the winning strategy on G will be the last player
to play on it, and thus he will win whether G is already over or not (in the latter
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case, by applying his strategy on G, since his opponent will be forced to play on
it).

Thus, the game shown Figure 7 is an N -position: G1 is a P-position, and G2

is an N -position, so G = G1 +G2 is an N -position.
But using only the outcomes does not tell us the outcome of the sum of two

N -positions. For example, the sum shown on Figure 8 is an N -position, while
the sum shown Figure 9 is a P-position, although both of these are sums of two
N -positions!

+

Fig. 9. A disjunctive sum of two N -positions of cram, which is a P-position.

Table 1 presents the sum of games of known outcomes. But we do not know
how to determine the outcome of the sum of two N -positions. We need another
tool to help us.

+ P N
P P N
N N N or P

Table 1. Summing impartial games: the outcomes.

We de�ne the equivalence between two games:

De�nition 10 [Albert et al., 2007] Two games G and H are equivalent (de-
noted by G ≡ H) if and only if G+H is a P-position.

Using Proposition 9, we see that all the games which are P-positions are
equivalent. Now, the games which are N -positions are equivalent if and only if
their sum is a P-position. We have the following proposition:

Proposition 11 For any game G, the game G+G is a P-position.

Indeed, in G + G, for any option o(G) of G, the �rst player will play to
G+o(G). The second player will only have to play to o(G)+o(G). Always being
able to replicate the �rst player's move, he will play the last move, and win.

Proposition 12 ≡ is an equivalence relation.

Indeed, ≡ is re�exive (we have G ≡ G by Proposition 11), symmetric (if
G ≡ H, then G+H is a P-position, as is H +G, and this implies that H ≡ G)
and transitive (if G ≡ H and H ≡ I, then G+H and H+I are P-positions, thus
G+H +H + I is a P-position, and since H +H is a P-position by Proposition
11, it implies that G+ I is a P-position, which means that G ≡ I).

In order to re�ne the reasoning, and to be able to determine if the sum of
two N -positions is an N -position or a P-position, we attribute numerical values
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to games, called Grundy values, which will correspond to the equivalence classes
of ≡.

The Grundy value of a game is linked to the Grundy values of its options. As
the sum of a game G and one of its options o(G) is necessarily an N -position (a
winning move being to play from G+o(G) to o(G)+o(G), which is a P-position
by Proposition 11), a game can not have the same value than one of its options.
Thus, we attribute to a game the smallest possible value which is not shared
with any of its options:

De�nition 13 Let X be a set of nonnegative integers. We de�ne the minimal
excluded value, or mex, of X by mex(X) = min{a ∈ N|∀x ∈ X, a 6= x}.

De�nition 14 [Albert et al., 2007] The Grundy value of a game G, denoted
G(G), is de�ned by: G(G) = mex({G(o(G))|o(G) is an option of G}).

We have the following proposition:

Proposition 15 [Grundy, 1939] A game G is a P-position if and only if G(G) =
0.

Now, we can de�ne the equivalence of two games in relation to their values:

Proposition 16 [Albert et al., 2007] G ≡ H if and only if G(G) = G(H)

De�nition 14 allows us to recursively compute the Grundy value of any game.
We now have a way to compute the outcome of a game when it is the sum of

two games. However, a game may be decomposed into the sum of three or more
games. Thus, we need to de�ne an explicit mean of computing the Grundy value
of a sum of games. It has been proven that:

Proposition 17 [Albert et al., 2007] G(G+H) = G(G)⊕G(H), where ⊕ is the
bitwise exclusive or, XOR, and where G(G) and G(H) are written in base 2.

For example, the three games shown on Figure 10 have the values 0, 1 and 2:
the �rst game is a P-position, and as such has a Grundy value of 0; the second
game has only one option, which is the empty grid, and as such has a Grundy
value of mex({0}) = 1; the third game has two options, which are the second
game and the game with only the leftmost and the rightmost cases remaining,
and as such has a Grundy value of mex({0; 1}) = 2. By Proposition 17, we have
that the Grundy value of this sum of games is 0⊕ 1⊕ 2 = 3.

+

⊕

+

⊕

=

=0 1 2 3

Fig. 10. The sum of three games with Grundy values of 0, 1 and 2 is a game with
Grundy value 3.
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This provides us with a tool to study some impartial games, i.e. those which
lend themselves to a decomposition in the form of the sum of smaller games (such
as cram or nim). Whether it is the outcome or the Grundy value (which is a
stronger result), a position of any impartial game can be thoroughly analyzed,
even though the computing cost may be too high. This is why some games are
studied under a mathematical perspective: they can be solved in a general case.

The study of impartial games is focused on two main aspects: determining,
for any game, its outcome or its Grundy value, and computing the correspond-
ing winning strategy. Studying the time complexity of these aspects is also an
important part of the research in that �eld.

2 Octal Games

Octal games are a speci�c class of combinatorial games, played on heaps of
counters.

2.1 De�nition and Examples

De�nition 18 [Berlekamp et al., 2001] In the 0.u1u2...un... (with ∀i, ui ≤ 7)
game, a player can remove i counters from one heap if and only if ui 6= 0.

Moreover, if ui =

2∑
j=0

bij2
j, the heap where the counters are removed can be

divided into j heaps if and only if bij 6= 0.

We will give �ve examples of basic octal games to illustrate the de�nition.
In the 0.1 game, a player can only empty a heap consisting of one counter,

every other move being forbidden. On the left of Figure 11 is an example of a
game of 0.1. The non-empty heaps with a size ≥ 2 are the �nal positions.

In the 0.2 game, a player can take one counter from a heap if its size is of
size at least 2. On the right of Figure 11 is an example of a game of 0.2.

Fig. 11. A game of 0.1 (on the left) and a game of 0.2 (on the right).

In the 0.3 game, a player can take one counter from a heap, whether he
empties it or not. On the left of Figure 12 is an example of a game of 0.3.

In the 0.4 game, a player can take one counter from a heap, if and only if
taking this vertex splits the heap in two smaller, non-empty heaps. On the right
of Figure 12 is an example of a game of 0.4.
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∅

Fig. 12. A game of 0.3 (on the left) and a game of 0.4 (on the right).

In the 0.7 game, a player can take one counter from a heap, whether he
empties it or not, and can also split the heap in two smaller, non-empty heaps.
Figure 13 shows an example of a game of 0.7.

∅

Fig. 13. A game of 0.7.

As we can see, an in�nite number of octal games can be constructed. More
games of the same kind can be constructed, if we allow ui ∈ N, those games being
called hexadecimal games. However, we shall not expand on them. Besides, octal
games can have an in�nite number of ui, such as nim, which is noted 0.333...,
since a player can take as many counters as he wants in a heap, provided he does
not break that heap in two smaller heaps.

2.2 Results

De�nition 19 [Berlekamp et al., 2001] The Nim-sequence of an octal game is
the sequence of its Grundy values on a heap of size 0, 1, 2...

The Nim-sequence is the tool used to analyze octal games. Since the reso-
lution of nim, the Nim-sequences of many octal games have been studied and
computed.

Although octal games seem to be easy, they actually prove to be quite di�cult
to compute their Nim-sequence in a general case. Even games with very easy rules
can be hard to compute.

For example, in the game 0.07, also called Dawson's Kayles, a player can
take two counters from a heap, whether he empties it or not, and may split the
remaining heap in two smaller, non-empty heaps. We can notice that 0.07 is the
same game than cram played on a line. The Nim-sequence of 0.07 has a period
of 34, after a pre-period of length 68. The 34 �rst values of the Nim-sequence of
0.07 are: 0112031103322405223301130211045274.

All the games for which the Nim-sequences have been computed exhibit a
similar behaviour, which is called eventual periodicity : a periodic pattern is ob-
served after a pre-period. For example, the period of the Nim-sequence of the
game 0.16 is 149459, with a pre-period of length 105351[Flammenkamp, 2012].

Some other games have not been solved at all, despite having very simple
rules. In the 0.007 game, a player can take three counters from a heap, whether
it empties the heap or not, and he may split the heap in two smaller, non-empty
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heaps. The �rst 228 values of the Nim-sequence of this game have been computed,
but no periodicity was observed, although only 37 P-positions (Grundy values
of 0) have been found.

Even though these results may seem discouraging, some statistical arguments
have been formuled, which seem to imply the following conjecture, attributed to
Guy:

Conjecture 20 [Berlekamp et al., 2001] All �nite octal games are eventually
periodic.

2.3 Octal Games on Graphs

As seen above, octal games on heaps have been well studied. However, we
wanted to extend the study on more complex structures. As heaps are similar to
chains in graph theory, it seemed natural to study octal games on graphs. This
is a new aspect of the research in this �eld.

We begin by naturally extending the de�nition of octal games (De�nition 18)
to graphs:

De�nition 21 In the 0.u1u2...un (with ∀i, ui ≤ 7) game on the graph G, a
player can remove i vertices from one connected component of G if and only if

ui 6= 0. Moreover, if ui =

2∑
j=0

bij2
j, the component where the vertices are removed

can be divided into j components if and only if bij 6= 0.

But this extension implies an important question: what do we mean by "re-
moving i vertices"? In the octal games on heaps, there is no notion of connec-
tivity. But, in graphs, there has to be a rule specifying how one is allowed to
choose the vertices he will remove from the graph.

At �rst, we could consider that a player can take the vertices however he
wants in the connected component, provided he respects the rules established
by the game. But this proves to be rather uninteresting, as it could trivialize
games. For example, in the 0.33 game, a player will always be able to take
two vertices without disconnecting the component (as long as the connected
component contains at least two vertices), making the game equivalent to the
0.33 game on a heap. Thus, we propose a re�nement of De�nition 21:

De�nition 22 In the 0.u1u2...un (with ∀i, ui ≤ 7) game on the graph G, a
player can remove i vertices from one connected component of G if and only
if ui 6= 0 and the subgraph induced by the vertices is connected. Moreover, if

ui =

2∑
j=0

bij2
j, the component where the vertices are removed can be divided into

j components if and only if bij 6= 0.

The concept of sum naturally arises when playing on di�erent connected
components of a graph.
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When G is a chain, playing an octal game on G is equivalent to playing an
octal game on a heap. Many octal games with ui ≤ 3 have been extensively
studied and solved on heaps, and as such on chains, hence we began to study
0.03 and 0.33 on di�erent families of graphs.

In the following, we will use the following notations:

De�nition 23 Given a graph G:

� V (G) is the set containing the vertices of G;
� E(G) is the set containing the edges of G.

3 0.03 on graphs

3.1 De�nition

According to De�nition 22, when playing 0.03 on a graph G, a player can
take two adjacent vertices, i.e. an edge, provided that he does not disconnect the
graph. We study the outcome of the game in various classes of graphs under the
normal convention.

3.2 Chains

De�nition 24 A chain Pm (with m ≥ 2) is a connected graph with m vertices
with all but two vertices of degree 2, the last two being of degree 1.

Playing an octal game on a chain is identical to playing an octal game on
one heap of counters, as in De�nition 18. Thus, we have the following result:

Theorem 25 A chain Pm is an N -position for the 0.03 game if and only if
m ≡ 2 mod 4 or m ≡ 3 mod 4.

Proof. The proof consists of showing the periodicity of the Nim-sequence for
the 0.03 game. It is in the appendix. ut

3.3 Forests

De�nition 26 Given a tree T , and e = uv one of its edges, we de�ne T − e as
the tree with V (T − e) = V (T ) \ {u; v} and E(T − e) = E(T ) \ {e}.

We have the following result:

Theorem 27 Given a tree T , for the 0.03 game, there are three cases:

1. One can not take an edge from T and T is a P-position;
2. All options of T are N -positions and T is a P-position;
3. All options of T are P-positions and T is an N -position.
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Proof. We use induction on |V (T )| to prove the result.
The base cases are the trees such that no move is available: as such, they are

P-positions.
Now, suppose that the property holds for a tree T . Let us show that the

outcome changes when we take any edge. There are two cases:

1. If there is an option T1 = T−e which is anN -position, then every edge e′ one
could take from T is still available on T1. Indeed, the only case where taking
e would prevent from taking such an e′ is if e and e′ share a common vertex.
However, this only happens if T = P3 and T1 is a single vertex, which is a P-
position, and that is not included in this case. We have T −e′ = (T1−e′)+e.
By induction hypothesis, T1 − e′ is a P-position, and again by induction
hypothesis, T − e′ = (T1− e′) + e is an N -position. Since the above equality
holds for every e′, T is a P-position.

2. Otherwise, for any edge e, T − e is a P-position, which implies that T is an
N -position.

ut

Theorem 27 implies that the strategy does not matter when playing 0.03 on a
tree. Indeed, every possible move will be played (or its symmetric will be played,
when the tree is reduced to a chain), so the order in which they are played does
not matter.

Note that it does not necessarily imply that T will be emptied at the end of
a game. Figure 14 shows a non-empty tree from which no move is available.

•
• •

• • • • •

Fig. 14. A tree from which no move is available for the 0.03 game.

Corollary 28 Given a tree T , for the 0.03 game:

� If one can not take an edge from T , then G(T ) = 0;

� Otherwise, G(T ) = 1− G(T − e) for any option T − e of T .

Proof. The only Grundy value for an N -position tree is 1, since, by Theorem
27, one can only move from it to a P-position. ut

Playing the game on a forest is exactly playing it on a disjoint union of trees.
Thus, by Proposition 17, we have the following result:

Corollary 29 Given a forest F =

n⋃
i=1

Ti, we have G(F ) =

n⊕
i=1

G(Ti) for the 0.03

game.



17

3.4 Grids

De�nition 30 An m× n grid is a graph G such that:

� V (G) = {ui,j |1 ≤ i ≤ m, 1 ≤ j ≤ n}
� E(G) = {(ui,j , ui,j+1)|j < n} ∪ {(ui,j , ui+1,j)|i < m}

Thus, an m × n grid is essentially equivalent to a chessboard of size m × n.
Note that we will always consider n ≥ 2, since an m × 1 grid is the chain Pm,
which has been solved in a previous section.

We point out that playing 0.03 on a grid is very similar to playing cram on
a chessboard, with the added connected condition. We will nevertheless focus
the rest of our study with a graph theoretical view.

We will need the following de�nition:

De�nition 31 Given a connected induced subgraph G of a m × n grid, we say
that a column j (with j ∈ [[1;n]]) of G has size k (with k ∈ [[1;m]]) if there are
exactly k vertices in the jth column of G.

3.4.1 2 × n Grids

De�nition 32 An even (1, 2)-grid graph is a connected induced subgraph of a
2× n grid where each block of consecutive columns of size 1 has an even size.

Figure 15 shows an example of an even (1, 2)-grid graph.

•

•

•

• • • • •

•

•

•

•

•

•

• •

•

• • •

block of size 4

block of size 2

Fig. 15. An example of (1, 2)-grid graph.

Lemma 33 From a non-empty even (1, 2)-grid graph, one can only play to an
even (1, 2)-grid graph.

Proof. The proof is a disjunction of cases. It can be found in the appendix. ut

Theorem 34 Let G be an even (1, 2)-grid graph. At the end of a 0.03 game, G
will be empty.

Proof. Let G be an even (1, 2)-grid graph. By Lemma 33, we know that as long
as G is not empty, both players will always play to an even (1, 2)-grid graph.
Since each player takes two vertices when playing, it means that there will always
be a move available until G is empty. ut
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Corollary 35 Let G be a 2 × n grid. G is an N -position for the 0.03 game if
and only if n is odd.

Proof. Let G be a 2×n grid. By de�nition, G is an even (1, 2)-grid graph, so by
Theorem 34, at the end of the game, G will be empty. Since each player takes
two vertices when playing, it means that n moves will be played. Thus, the �rst
player will play the last move if and only if n is odd. ut

3.4.2 3 × n Grids

In order to help us conjecture about the outcome of the game on 3×n grids,
we developed a program. Using the algorithm shown in Algorithm 2, we were
able to know if a grid was a P-position or an N -position.

Algorithm 2: Solve
Data: G a position, T a table mapping positions with their outcome
Result: The outcome of the 3× n grid
if no move is available then

add the position G with P in T
return P

if the position is in T then
return the corresponding outcome

for every move available do

G′ ← G with the move played
if Solve(G′, T )) = P then

add the position G with N in T
return N

add the position G with P in T
return P

This algorithm was implemented in C++. We made an extensive use of the
standard library, by using the map data structure to improve the e�ciency of
the algorithm: each position met was parsed into a string of 0s and 1s, and was
mapped in the structure with its outcome.

Noticing the pattern (NNPP)∗ in the sequence of outcomes, we saw a rela-
tion to the number of possible moves in the grid: the grid is an N position if and

only if b3n
2
c is odd. Thus, we modi�ed the algorithm to see if the winning player

had a strategy consisting of emptying the grid. Now, each position is mapped to
its outcome and the maximal number of moves played in a winning strategy try-
ing to empty the grid. We considered that as the winning player tries to empty
the grid, the other player tries to prevent it from happening by minimizing the
number of moves.

Table 2 shows the result of the execution of the program. We can notice that
at the end of a game, the grid is either empty or reduced to a single vertex. This
seems to suggest that, as we conjectured and as with the 2× n grid, a strategy
exists to ensure that the grid will be emptied. As shown on Figure 16, there are
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positions where no move is available and the grid is not emptied, but a winning
strategy can always avoid them.

n 1 2 3 4 5 6 7
outcome N N P P N N P

number of vertices 3 6 9 12 15 18 21
number of moves played 1 3 4 6 7 9 10

Table 2. Number of moves played on a 3 × n grid when applying a winning strategy
trying to empty the graph for the 0.03 game.

•

•

•

• • •

•

•

Fig. 16. A position where no move is available, but the grid is not emptied.

The program helped us to conjecture the result, but we still need to formally
prove it.

De�nition 36 A (1, 3)-grid graph is a connected induced subgraph of a grid
where every column is of size 1 or 3. Moreover, if a column is of size 1, then the
vertex in it is not in the middle row.

Figure 17 shows an example of a (1, 3)-grid graph.

•

•

•

• • •

•

• •

•

•

•

•

•

•

•

•

•

• •

•

•

• • • •

Fig. 17. An example of (1, 3)-grid graph.

Observation 37 If a subgraph of a 3 × n grid is a chain, then it can be seen
a (1, 3)-grid graph. As shown in Figure 18, we can "�atten" it, so that every
column is of size 1.

•

•

• •
• • • •

Fig. 18. A chain is a (1, 3)-grid graph.

De�nition 38 Let G be a (1, 3)-grid graph with n columns. We de�ne the word
s(G) = g1...gn where gi ∈ {1+; 1−; 3} is the size of the ith column. Moreover, if
gi = 1+ (resp. gi = 1−), it means that the vertex of the ith column is on the top
(resp. bottom) row.
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Lemma 39 From a (1, 3)-grid graph G with |V (G)| ≥ 2, one can always play
to a (1, 3)-grid graph.

Proof. Let G be a (1, 3)-grid graph with |V (G)| ≥ 2 and s(G) = g1...gn. There
are two cases:

1. A vertical move is available in a column. In this case, playing it will make
the resulting graph a (1, 3)-grid graph.

2. No vertical move is available. This means that, for every gi = 3, we have
gi−1 = 1+ and gi+1 = 1−, or gi−1 = 1− and gi+1 = 1+. This implies that
G is a chain, and thus, by Observation 37, a (1, 3)-grid graph. In this case,
playing an horizontal move on either end of the chain will make the resulting
graph a (1, 3)-grid graph.

ut

Lemma 40 Let G be a (1, 3)-grid graph with |V (G)| ≥ 4. For every �rst move,
there exists an answering move resulting in a (1, 3)-grid graph.

Proof. Let G be a (1, 3)-grid graph G with |V (G)| ≥ 4 and s(G) = g1...gn.
First, suppose that the �rst player played a move on G resulting in a (1, 3)-

grid graph. In this case, the other player can always answer to a resulting (1, 3)-
grid graph, by Lemma 39.

Now, suppose that the �rst player played a move not resulting in a (1, 3)-grid
graph. According to the proof of Lemma 39, it means that the player played an
horizontal move. There are three kind of horizontal moves available in a (1, 3)-
grid graph:

1. Playing in the middle row. In this case, the other player will play in the top
row if possible, or in the bottom row if not. At least one of these two moves
will be available, and will result in a (1, 3)-grid graph. Indeed, an horizontal
move is available in the middle row if s(G) contains 333, 3331 (whether it is
3331+ or 3331− does not matter) or 3333, as shown in Figure 19.

•

•

•

•

•

•

•

•

•

333 ends s(G)
•

•

•

•

•

•

•

•

• •

3331 ∈ s(G)
•

•

•

•

•

•

•

•

•

•

•

•

3333 ∈ s(G)

Fig. 19. The local topologies from which one can play in the middle row (minus the
symmetries).

2. Playing in the top row. In this case, the other player will play in the middle
row, just below the �rst move. This move will always be available, and will
result in a (1, 3)-grid graph. Indeed, an horizontal move is available in the
top row if s(G) contains 33, 331−, 1−331−, 333, 3331− or 3333, as shown in
Figure 20.
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•
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•

s(G) = 33
•

•

•

•

•

•

•
331− begins s(G)

•

•

•

•

•

•

• •
1−331− ∈ s(G)
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•

•

•

•

•

•

•

•

333 ends s(G)
•

•

•
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•

•

•

•

•

•
3331− ∈ s(G)
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•

•
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•

•

3333 ∈ s(G)

Fig. 20. The local topologies from which one can play on the top row (minus the
symmetries).

3. Playing in the bottom row. This case is symmetrical to the previous one.

ut

Theorem 41 A (1, 3)-grid graph G is a P-position for the 0.03 game if and

only if b |V (G)|
2
c is even.

Proof. We use induction on |V (G)| to prove the result. The base cases are

|V (G)| = 0 and |V (G)| = 1. In this case, b |V (G)|
2
c = 0, the �rst player can not

play, thus the graph is a P-position.
Now, suppose we have a (1, 3)-grid graph G with |V (G)| ≥ 5. There are two

cases:

1. b |V (G)|
2
c is odd. In this case, the �rst player can move to a (1, 3)-grid graph

by Lemma 39. By induction hypothesis, the resulting graph is a P-position,
thus G is an N -position.

2. b |V (G)|
2
c ≥ 2 is even. In this case, after any move of the �rst player, the

second player will be able to play to a (1, 3)-grid graph G′ by Lemma 40.

G′ satis�es b |V (G′)|
2
c = b |V (G)| − 4

2
c = b |V (G)|

2
c − 2, which is even. By

induction hypothesis, G′ is a P-position, hence G is a P-position.
ut

Corollary 42 Let G be a 3× n grid. If n ≡ 1 (mod 4) or n ≡ 2 (mod 4), then
G is an N -position for the 0.03 game. Otherwise, G is a P-position for the 0.03
game.

Proof. A 3 × n grid is a (1, 3)-grid graph with |V (G)| = 3n. The result holds

by applying the Theorem 41, since b3n
2
c is odd if and only if n ≡ 1 (mod 4) or

n ≡ 2 (mod 4). ut
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3.4.3 Perspectives

We extended Algorithm 2 to apply it to grids of any size. Since it helped us
to conjecture a result for the 3 × n grid, maybe it would also help us for other
grids. Table 3 shows the result of the execution of the algorithm on 4× n.

n 2 3 4 5
number of moves played on the 4× n grid 4 6 8 10

Table 3. Number of moves played on 4× n grids.

We see that, again, the grid is emptied at the end of the game. We state the
Conjecture 43.

Conjecture 43 In an m × n grid, there exists a winning strategy such that

bmn

2
c moves will be played.

In other words, we are inclined to think that, for the 0.03 game, there is a
winning strategy where every possible move will be played.

Trying to prove or in�rm it, or at least to study it for speci�c values of m,
is an interesting perspective. The idea could be to try �nding other structures,
similar to the (1, 3)-grid graph, which could guarantee that no blocking situation
would happen.

4 0.33 on graphs

4.1 De�nition

According to De�nition 22, when playing 0.33 on a graph G, a player can take
either one vertex or two adjacent vertices provided that he does not disconnect
the graph. We study the outcome of the game in some classes of trees under the
normal convention.

4.2 Chains

As previously said, playing an octal game on a chain is identical to playing
an octal game on one heap of counters. Thus, we have the following result:

Theorem 44 A chain Pm is a P-position for the 0.33 game if and only if m ≡
0 mod 3. Moreover, we have G(Pm) = m mod 3.

Proof. The proof consists of showing the periodicity of the Nim-sequence for
the 0.33 game. It is in the appendix. ut
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4.3 k-podes

De�nition 45 A k-pode Pod(l1, ..., lk) is a graph with a central vertex, on which
are appended k chains of length l1, ..., lk.

Figure 21 shows an example of k-pode. The k-pode being the simplest tree
after the chain, we hope to �nd interesting results.

•

•

•

•

•••••

Fig. 21. The 4-pode Pod(1, 1, 2, 4).

Observation 46 The 0-pode Pod(0) is a single vertex.
The 1-pode Pod(l) is the chain Pl+1.
The 2-pode Pod(l1, l2) is the chain Pl1+l2+1.

Lemma 47 Let P be a k-pode, with P 6= Pod(0) and P 6= Pod(1). If P is
an N -position for the 0.33 game, then there is a winning move which does not
involve taking the central vertex.

Proof. Let P be a k-pode (P 6= Pod(0) and P 6= Pod(1)).
First, suppose that P is not a chain, i.e. P = Pod(l1, l2, l3), with l1, l2, l3 > 0.

Then, no winning move may involve taking the central vertex, as such a move
would be illegal.

Now, let P be a chain of length n. Since P is an N -position and P 6∈
{Pod(0);Pod(1)}, we can assume that n ≥ 4. If the winning move involves
taking the central vertex, then the winning move can be taking one or two ver-
tices including the central vertex. Hence the central vertex is the �rst or the
second vertex of the chain and, since n ≥ 4, the winning move can be replicated
on the other end of the chain without taking the central vertex. ut

We now prove that one can add a P3 to a leaf or to the central vertex of a
k-pode without changing the issue and the grundy number of the game. We �rst
prove a technical lemma.

Lemma 48 G(Pod(0)) = G(Pod(1, 1, 1))

Proof. We prove that Pod(0) + Pod(1, 1, 1) is a P-position. Let us show that
the second player always has an answer to the �rst player's possible moves:

� If the �rst player empties Pod(0), then the second player's answer is to take
one vertex from Pod(1, 1, 1), leaving P3 which is a P-position.

� If the �rst player takes one vertex from Pod(1, 1, 1), then the second player's
answer is to empty Pod(0), leaving P3 which is a P-position.



24

Thus, no matter what move the �rst player plays, he plays in an N -position.
This implies that Pod(0) + Pod(1, 1, 1) is a P-position. ut

The proofs for the other technical lemmas will be similar, so they will be
placed in the appendix.

Lemma 49 G(Pod(1, 1, 3)) = 0, i.e. Pod(1, 1, 3) is a P-position.

Lemma 50 For any i ∈ [[1; k]], G(Pod(l1, ..., li, ..., lk)) = G(Pod(l1, ..., li+3, ...lk)).

Note that we allow li = 0.
Proof. Let P = Pod(l1, ..., li, ..., lk) and P ′ = Pod(l1, ..., li + 3, ...lk). We show
that P + P ′ is a P-position. We reason by induction on |V (P )|.

The base cases are the following:

� If P is empty (resp. P = P1, resp. P = P2), then P ′ = P3 (resp. P ′ = P4,
resp. P ′ = P5), so G(P ) = G(P ′) by Theorem 44.

� If P = P3, then either P ′ = P5 and we have the result by Theorem 44, or
P ′ = Pod(1, 1, 3) and we have the result by Lemma 49.

From a certain position P + P ′, the second player always has an answer to
the �rst player's move:

� If the �rst player takes one (resp. two) vertex from the new chain in P ′, then
the second player takes two (resp. one) vertices from it, leaving P +P which
is a P-position by Proposition 11.

� If the �rst player plays elsewhere on P ′, the second player answers by playing
the same move on P . This will always be possible. By induction hypothesis,
the new position will be a P-position.

� If the �rst player plays on P , there are two cases:
1. The �rst player does not take the central vertex. In this case, the second

player can replicate the move on P ′, allowing us to invoke the induction
hypothesis.

2. The �rst player takes the central vertex. This implies that P = Pm with
m ≥ 4. Then, as said in the proof of Lemma 47, the second player will
always be able to replicate the �rst player's move on P ′, by playing the
symmetrical move. By induction hypothesis, the new position will be a
P-position.

ut

This allows us to deduce this result:

Corollary 51 G(Pod(l1, ..., lk)) = G(Pod(l1 mod 3, ..., lk mod 3))

From Corollary 51, we know that all chains of length 3p can be reduced to
0, all chains of length 3p+1 can be reduced to 1, and all chains of length 3p+2
can be reduced to 2. Thus, it su�ces to study the Grundy values of the game
on Pod(l1, ..., lk) with ∀i ∈ [[1; k]], li ∈ {1; 2}.
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Number of chains of length 2 in the k-pode
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Fig. 22. First �ve rows of the table of positions

We build a table of positions: the rows stand for the number of chains at-
tached to the central vertex, and the columns stand for the number of chains of
length 2. Figure 22 shows the �rst �ve rows of this table (the top positions are
the empty graph and the 0-pode with only the central vertex).

We can notice that, from a given position, a player can always move in three
directions: up (reducing a chain of length 1 to 0 by taking a vertex), left (reducing
a chain of length 2 to 1 by taking a vertex), and up left (reducing a chain of
length 2 to 0 by taking two vertices). The only position from which another move
is available is from Pod(1): taking two vertices results in the empty graph.

First, let us study the outcomes of each of these positions. We proceed in-
ductively from the top lines:

� The empty graph is a P-position, since from it one can not play;
� Pod(0) is an N -position, since it represents a single vertex: the player has
to take it in order to win;

� Pod(1) is an N -position, since it represents a chain of length 1 attached to
the central vertex: the player has to take the two adjacent vertices in order
to win;

� Pod(2) is a P-position, since from it a player can only move to winning
positions (Pod(0) or Pod(1)).

By continuing to apply this reasoning, we can deduce the table of outcomes
shown on Figure 23.

We are now able to deduce this result :

Lemma 52 For p ≥ 1, the (2p)th row of the table will be of the form: PNNN
(PN )∗, and the (2p+ 1)th row of the table will be of the form: NNP(N )i∗

Proof. We use induction on p to prove the result. The complete proof can be
found in the appendix. ut
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Number of chains of length 2 in the k-pode
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Fig. 23. First �ve rows of the table of positions

From Lemma 52, we are now able to determine precisely the winning positions
for the 0.33 game on any k-pode:

Theorem 53 Let P be a k-pode with n1 (resp. n2) being the number of chains
of length 3p+1 (resp. 3p+2) in P . P is an N -position for the 0.33 game if one
of these four conditions holds :

1. n1 = n2 = 0
2. n2 is odd and (n1, n2) 6= (0, 1)
3. n2 = 2 and n1 is even
4. n2 6= 2 is even and n1 is odd

A table of the Grundy values for the k-podes can be found using the same
arguments, as shown in Figure 34, in the appendix.

4.4 Bipodes

De�nition 54 A (k, l,m)-bipode Bipod(l1, ..., lk; lk+1, ...lk+l;m) is a graph con-
stituted of the k-pode Pod(l1, ..., lk) and the l-pode Pod(lk+1, ...lk+l) whose central
vertices are connected by a chain of m edges.

In other terms, a bipode is a tree with exactly two vertices of degree 3 or
more. Figure 24 shows an example of bipode.

In a bipode, we can reduce the middle chain modulo 3:

Lemma 55 G(Bipod(l1, ..., lk+l;m)) = G(Bipod(l1, ..., lk+l;m mod 3))

Proof. We will prove that adding three edges to the chain does not change the
Grundy value of the bipode, the result being a generalization of this.
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•

•

•

•

•

• • •

•

•

•

•

Fig. 24. The (3, 3, 3)-bipode Bipod(1, 1, 2; 1, 1, 2; 3).

Let B be a (k, l,m)-bipode, with P (resp. Q) the k-pode (resp. the l-pode)
at one extremity of the chain of length m, as shown in Figure 25. Let B′ be the
(k, l, (m+ 3))-bipode obtained by adding three edges to the chain connecting P
and Q in B, as shown in Figure 26.

•u •vP Q
Pm−1

Fig. 25. B with Pm−1 the chain of m edges.

•u •vP Q
Pm+2

Fig. 26. B with Pm+2 the chain of m+ 3 edges.

We show that B +B′ is a P-position. We use induction on the size of B.

The base cases are when P is empty or a single vertex. In this case, B and
B′ are (l + 1)-podes, and the result is covered by Lemma 50.

Now, we show that, for a certain B + B′, the second player always has an
answer to the �rst player's move. We can assume that both P and Q have at
least two vertices. Hence, the �rst player is unable to play on the middle chain.
Thus, the �rst player can play either on P or Q, in either of the two bipodes. The
second player will replicate the same move on the other bipode. By induction
hypothesis, we have the result. ut

We will now prove that we can add a chain of length 3 in a bipode to a leaf
or to one central vertex without changing the Grundy value of the graph. We
�rst need a few technical lemmas. The proofs are in the appendix, and follow
the same reasoning than the proofs for the technical lemmas of the k-pode.

Lemma 56 G(Bipod(1, 1; 1, 1; 1)) = 0, i.e. Bipod(1, 1; 1, 1; 1) is a P-position.

Lemma 57 Let B and B′ be the two graphs shown on Figure 27 (P is a k-pode
with u as its central vertex). We have G(B) = G(B′).
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•uP •u •v
•w

•
x

P

Fig. 27. B and B′

Lemma 58 Let B and B′ be the two graphs shown on Figure 28 (P is a k-pode
with u as its central vertex). We have G(B) = G(B′).

•u •zP •u •z •v
•w

•
x

P

Fig. 28. B and B′

We are now ready to generalize Lemma 50 to bipodes:

Lemma 59 G(Bipod(l1, ..., li, ..., lk+l;m)) = G(Bipod(l1, ..., li + 3, ..., lk+l;m))

As in Lemma 50, we allow li = 0.
This implies:

Corollary 60 G(Bipod(l1, ..., lk+l;m)) = G(Bipod(l1 mod 3, ..., lk+l mod 3;m))

We are now able to compute the Grundy values of a bipode, by using induc-
tion.

Theorem 61 Let Ba1,a2,b1,b2 be a (k, l,m)-bipode, with P (resp. Q) the k-pode
(resp. the l-pode) at one extremity of the chain of length m, with a1 (resp. a2)
the number of chains of length 1 (resp. 2) attached to the central vertex of P (b1
and b2 are de�ned the same way on Q).
G(Ba1,b1,a2,b2) = mex (

� G(Ba1−1,a2,b1,b2) if a1 > 0
� G(Ba1,a2,b1−1,b2) if b1 > 0
� G(Ba1,a2−1,b1,b2) if a2 > 0
� G(Ba1,a2,b1,b2−1) if b2 > 0
� G(Ba1+1,a2−1,b1,b2) if a2 > 0
� G(Ba1,a2,b1+1,b2−1) if b2 > 0
� G(Pod(1, ..., 1, 2, ...2,m − 1)) (with b1 chains of length 1 and b2 chains of

length 2) if a1 = 1 and a2 = 0
� G(Pod(1, ..., 1, 2, ...2,m − 1)) (with a1 chains of length 1 and a2 chains of

length 2) if b1 = 1 and b2 = 0

)
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Proof. The terminal values are found in the table of k-podes and chains. The
relation comes from the moves which can be played from Ba1,a2,b1,b2 . ut

Thanks to this formula, we can compute a four-dimensional table of Grundy
values for the bipodes. A table for the Grundy values of (k, l, 1)-bipodes (resp.
(k, l, 2)-bipodes) can be found Table 4 (resp. Table 5) in the appendix. It has
been computed using a recursive program written in C++. We notice that a
periodicity of the values establishes itself.

We also notice that (k, l, 1)-bipodes behave almost like a sum of k-podes in
terms of Grundy values. Some of the results can be induced this way: if one of the
two k-podes is a P-position, then the bipode will have the Grundy value of the
other one: the winning player will apply his strategy on the other k-pode, and
answer any move of the other player on the P k-pode by the winning strategy
in it. If the bipode is large enough, then its Grundy value can be computed as
a sum of two k-podes. Some terminal cases are problematic, but they can be
treated separately.

This allows us to compute the Grundy value of a (k, l, 1)-bipode by using the
Grundy values of its two k-podes.

However, the same can not be said of (k, l, 2)-bipodes. Instead, it could be
interesting to study similar games, such as 0.32 or 0.23, and try to express the
Grundy value of a (k, l, 2)-bipode for 0.33 by using the Grundy value of its two
k-podes for those other games.

4.5 Perspectives

The main argument used to solve the 0.33 game for the k-podes and bipodes
was to reduce all the chains ending in a leaf and the internal chain between two
central nodes to their modulo 3, which greatly reduced the search space, and
allowed to have algorithms to compute the Grundy value.

However, this reduction is not possible in the trees:

Observation 62 One cannot add a P3 to any vertex of a bipode without chang-
ing the Grundy value (and even without changing the output). Indeed, the bipode
of Figure 29 is an N -position, but appending a P3 to u changes it into a P-
position.

•

•

• • •

•

•u •

Fig. 29. Counter-example for trees.

This means that there is still work to do for the 0.33 game on trees. An idea
could be to use related octal games, such as 0.32, 0.23 or 0.22, to help us to
compute Grundy values for caterpillars.
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An other interesting problem could be to study the 0.33 game on 3k × n
grids. We state the following conjecture:

Conjecture 63 Any 3k × n grid is a P-position for the 0.33 game.

This comes from the fact that there are 3kn vertices in a 3k × n grid, and
the second player may always be able to take one vertex (resp. two vertices) if
the �rst player takes two vertices (resp. one vertex). The idea could be to �nd
a structure ensuring that the second player could always take two vertices after
the �rst player taking one vertex, as what was made for the 0.03 game.

Conclusion

Combinatorial games are a vast domain of research, with many open problems
and possible extensions. During this internship, we extended the concept of octal
games to graphs, and studied two of these games on some classes of graphs.

For the 0.03 game, the results found on grids are promising. The implementa-
tion of the algorithm allowed us to state a conjecture which could be interesting,
and we could try and �nd a way to extend the game to other classes of graphs.
In particular, the case of general grids is the next step that could be solved.

The 0.33 game could be disappointing: the reduction we used to k-podes and
bipodes can not be generalized to trees, even though interesting results were
found for particular classes of trees. However, other classes of graphs may be
solved for this game.

An other perspective would be to develop the �eld of octal games on graphs,
by studying other games. It could also be interesting to try and generalize Con-
jecture 20 on graphs.
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A Proofs for 0.03

Proof of Theorem 25

A chain Pm is an N -position for the 0.03 game if and only if m ≡ 2 mod 4
or m ≡ 3 mod 4.

Proof. We reason by induction on m. The base case is:

� m = 0 (resp. m = 1). This means Pm is an empty chain (resp. a single
vertex). In this case, the �rst player can not play, and the chain is a P-
position.

Let m ≥ 2. Suppose that the result holds for all i < m. Let us study the
outcome of Pm+2.

From Pm+2, one can only take two vertices on either side of Pm, since one
can not disconnect the chain. Thus, the only available move from Pm+2 is to
play to Pm.

If m + 2 ≡ 2 mod 4 (resp. m + 2 ≡ 3 mod 4), then m ≡ 0 mod 4 (resp.
m ≡ 1 mod 4), which imply that Pm is a P-position by induction hypothesis.
Thus, Pm+2 is an N -position.

Conversely, if m+2 ≡ 0 mod 4 (resp. m+2 ≡ 1 mod 4), m ≡ 2 mod 4 (resp.
m ≡ 3 mod 4), Pm is an N -position by induction hypothesis, which implies that
Pm+2 is a P-position. ut

Proof of Lemma 33

From a non-empty even (1, 2)-grid graph, one can only play to an even (1, 2)-
grid graph.

Proof. Let G be an even (1, 2)-grid graph. We note that a move is always
available if G is not empty: if there is a column of size 2 on either side of G, then
a vertical move is available ; otherwise, as the number of consecutive columns of
size 1 is even, an horizontal move on either side of G will be available.

Now, we consider the two possible kinds of move in G:

1. Vertical moves, if available, will only appear on either side of G, and will
result in an even (1, 2)-grid graph.

2. Horizontal moves, since they take two adjacent vertices and can not discon-
nect G, they result in an even (1, 2)-grid graph.

ut
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B Proofs for 0.33

Proof of Theorem 44

A chain Pm is a P-position for the 0.33 game if and only if m ≡ 0 mod 3.
Moreover, we have G(Pm) = m mod 3.

Proof. We use induction on m to prove the result. The base cases are:

� m = 0. In this case, Pm is the empty graph, and thus is a P-position. This
implies that G(P0) = 0.

� m = 1. In this case, Pm is a single vertex, and thus is an N -position: the
�rst player only has to take the vertex to win. From it, one can only play to
the empty graph, thus G(P1) = mex(G(P0)) = mex(0) = 1.

� m = 2. In this case, the �rst player has to take the two vertices to win, thus
the graph is an N -position. From it, one can play to both the empty graph
and the single vertex, thus G(P2) = mex(G(P0),G(P1)) = mex(0, 1) = 2.

Now, from a chain Pm, one can play to either Pm−1 or Pm−2. Thus, G(Pm) =
mex(G(Pm−1),G(Pm−2)). By induction hypothesis, this means that G(Pm) =
mex(m−1 mod 3,m−2 mod 3) = m mod 3. Since a game is a P-position if and
only if its Grundy value is 0, it means that Pm is a P-position if and only if
m ≡ 0 mod 3. ut

Proof of Lemma 49

G(Pod(1, 1, 3)) = 0, i.e. Pod(1, 1, 3) is a P-position.

Proof. From Pod(1, 1, 3), the �rst player only has two moves available:

� Taking one vertex from either of the two chains of length 1. In this case, the
graph is reduced to P5, which is an N -position by Theorem 44.

� Taking one (resp. two) vertex from the chain of length 3. In this case, the
second player takes two (resp. one) vertices from the same chain, leaving P3,
which is a P-position.

ut

Proof of Lemma 52

For p ≥ 1, the (2p)th row of the table will be of the form: PNNN
(PN )∗, and the (2p+ 1)th row of the table will be of the form: NNP(N )i∗

Proof. We argue by induction on p = bk/2c. The base cases are the rows 2 and
3 of the table.

Assume that the result holds for a certain p. Figure 30 shows the (2p)th and
(2p+ 1)th rows.
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P N N N P N P N ... P

N N P N N N N N ... N N

Fig. 30. The (2p)th and (2p+ 1)th rows. The (2p)th row ends with a P since there is
an odd number of positions in it.

Now, we can reason inductively: if, from a position, one can play to a P-
position, then this position is an N -position. Conversely, if from a position one
can only play to N -positions, then it is a P-position. Figure 31 shows the result
of this reasoning, corresponding to the formula.

P N N N P N ... P

N N P N N N ... N N

P N N N P N ... P N P

N N P N N N ... N N N N

Fig. 31. The rows (2p) to (2p + 3). In thick are the moves from which one can play
from an N -position to a P-position.

ut

Proof of Lemma 56

G(Bipod(1, 1; 1, 1; 1)) = 0, i.e. Bipod(1, 1; 1, 1; 1) is a P-position.

Proof. From Bipod(1, 1; 1, 1; 1), as shown in Figure 32, one can only play to a
graph which can be seen as Pod(1, 1, 2). We can refer to the Figure 23, and notice
that Pod(1, 1, 2) is an N -position. Thus, Bipod(1, 1; 1, 1; 1) is a P-position.

•
•

•
•
•

•

Fig. 32. Bipod(1, 1; 1, 1; 1)

ut

Proof of Lemma 57

Let B and B′ be the two graphs shown on Figure 27 (P is a k-pode with u
as its central vertex). We have G(B) = G(B′).
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Proof. We show that B+B′ is a P-position. We use induction on the size of B.
The base cases are:

� B is empty, thus B′ = P3. B +B′ = P3, which is a P-position.
� B is a vertex, thus B′ = Pod(1, 1, 1). We know by Lemma 48 that G(B) =
G(B′) = 1.

� B is Pod(1), thus B′ = Pod(1, 1, 2). We only have to refer to Figure 34 to
know that G(B) = G(B′) = 2.

� B is P3 with u as its central vertex, thus B′ = Bipod(1, 1; 1, 1; 1). By Lemma
56, B′ is a P-position, as is B, so G(B) = G(B′) = 0.

From a certain position B + B′, the second player always has an answer to
the �rst player's moves:

� If the �rst player plays on P on B′, the second player plays the same move
on B. By induction hypothesis, the resulting graph will be a P-position.

� If the �rst player takes w (resp. x), the second player takes v and x (resp. v
and w). The resulting graphs will be B +B, which is a P-position.

� If the �rst player plays on B, there are two cases:
1. The �rst player does not take u. In this case, the second player can

replicate the move on B′, allowing us to invoke the induction hypothesis.
2. The �rst player takes u. This implies that P = Pm with m ≥ 4, or that

P = P3 with u as its central vertex. Then, by Lemma 47, the second
player will always be able to replicate the �rst player's move on B′, by
playing the symmetrical move. By induction hypothesis, the new position
is a P-position.

ut

Proof of Lemma 58

Let B and B′ be the two graphs shown on Figure 28 (P is a k-pode with u
as its central vertex). We have G(B) = G(B′).

Proof. We show that B+B′ is a P-position. We use induction on the size of B.
The base cases are:

� B is a single vertex (i.e. P is empty), thus B′ = Pod(1, 1, 1). We know by
Lemma 48 that G(B) = G(B′) = 1.

� B is two vertices (i.e. P is a single vertex), thus B′ = Pod(1, 1, 2). If we refer
to Figure 23, we know that G(B) = G(B′) = 2.

� B is P3 (i.e. P is two vertices), thus B′ = Pod(1, 1) (by Lemma 50, we
know that the chain of length 3 can be deleted without changing the grundy
value). If we refer to Figure 23, we know that B′ is a P-position, and since
B = P3 is also a P-position, we have that B +B′ is a P-position.
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� B = Pod(1, 1, 1), thus B′ = Bipod(1, 1; 1, 1; 2). From B+B′, the �rst player
can only take one vertex from either of the two graphs. Whether he takes one
vertex from the k-pode (reducing it to P3) or from the bipode (reducing it
to Pod(1, 1, 3), which has the same grundy value than Pod(1, 1)), the second
player only has to take one vertex from the other graph. Thus, the game will
be reduced to P3 + Pod(1, 1), which, as seen above, is a P-position.

The end of the proof is exactly the same than for Lemma 57, with exactly
the same cases: the �rst player playing on P in B′, playing on w or x, playing
on P in B and not taking u, and playing on P in B and taking u.

Note that the case where the �rst player can take both u and z has been
covered in the base cases. ut

Proof of Lemma 59

G(Bipod(l1, ..., li, ..., lk+l;m)) = G(Bipod(l1, ..., li + 3, ..., lk+l;m))

Proof. Thanks to Lemma 55, we only have to prove the result on the k, l, 1-
bipodes and the k, l, 2-bipodes (the k, l, 0-bipodes being (k+ l)-podes, their case
is already covered by Lemma 50).

Let B = Bipod(l1, ..., li, ..., lk+l;m), with P (resp. Q) the k-pode (resp.
the l-pode) at one extremity of the chain of length m ∈ {1; 2}, and B′ =
Bipod(l1, ..., li + 3, ..., lk+l;m). We suppose, without loss of generality, that i ∈
[[k + 1; k + l]]. We reason by induction on |V (B)|.

First, we consider the base cases:

� If Q is empty (resp. a single vertex), then B is an (k + 1)-pode, and the
result holds by Lemma 50.

� If Q is a chain, and li = 0, then replicating the �rst player's move will always
be possible, except in the cases shown Figure 33 (above is when m = 1 below
is when m = 2).

• •v
•w

P • •v
•w

• • •
P

• • •v
•w

P • • •v
•w

• • •
P

Fig. 33. Cases where the second player can not replicate the �rst player's move.

In those cases, if the �rst player takes both v and w on B, then the second
player is unable to replicate the move on B′. The strategy is then to take
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two vertices from the new chain. By Lemma 57 (when m = 1) and Lemma
58 (when m = 2), we have G(B) = G(B′).

Now, we consider a certain B and B′. We show that B +B′ is a P-position.
For a certain position B + B′, we show that the second player always has an
answer to the �rst player's move:

� If the �rst player plays on P on either of the two graphs, then the second
player answers by replicating his move on the other graph, allowing us to
invoke the induction hypothesis.

� If the �rst player takes one (resp. two) vertex from the new chain on B′,
then the second player answers by taking two (resp. one) vertices from it,
leaving B +B which is a P-position.

� If the �rst player plays on Q on B′, then the second player answers by
replicating his move on B, which will always be possible, allowing us to
invoke the induction hypothesis.

� If the �rst player plays on Q on B, he will not be able to take its central
vertex, since Q is not a chain. Thus, his move can be replicated on B′,
allowing us to invoke the induction hypothesis.

ut

C Grundy values for the k-podes

Figure 34 shows the �rst rows of the Grundy values for the 0.33 game on
k-podes.

Number of chains of length 2 in the k-pode
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0

1

2

3

4

0 1 2 3 4

0

1

2 0

0 1 2

1 2 0 1

0 3 1 2 0

Fig. 34. First �ve rows of the table of Grundy values

We have the following result:
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Theorem 64 For p ≥ 3, the (2p − 1)th row of the table will be of the form:
0312(03)*, and the (2p)th row of the table will be of the form: 1203(12)*.

The proof unfolds exactly the same way than the proof for Lemma 52.

D Grundy values for the k, l, 1-bipodes

Let Ba1,a2,b1,b2 be a (k, l, 1)-bipode, with P (resp. Q) the k-pode (resp. the
l-pode) at one extremity of the chain of length 1, with a1 (resp. a2) the number
of chains of length 1 (resp. 2) attached to the central vertex of P (b1 and b2 are
de�ned the same way on Q).

Table 4 contains the Grundy values ofBa1,a2,b1,b2 for (a1, a2, b1, b2) ≤ (6, 6, 6, 6).
We stopped the computation at this point since the periodicity establishes itself,
due to the way the recursive formula exposed in Theorem 61 works.

E Grundy values for the k, l, 2-bipodes

Let Ba1,a2,b1,b2 be a (k, l, 2)-bipode, with P (resp. Q) the k-pode (resp. the
l-pode) at one extremity of the chain of length 2, with a1 (resp. a2) the number
of chains of length 1 (resp. 2) attached to the central vertex of P (b1 and b2 are
de�ned the same way on Q).

Table 5 contains the Grundy values ofBa1,a2,b1,b2 for (a1, a2, b1, b2) ≤ (6, 6, 6, 6).
We stopped the computation at this point since the periodicity establishes itself,
due to the way the recursive formula exposed in Theorem 61 works.
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Table 4. The Grundy values for a k, l, 1-bipode Ba1,a2,b1,b2 .



39

a
2
\b

2
0

1
2

3
4

5
6

0

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
2

3
2

3
2

1
1

2
0

1
0

1
0

2
2

0
1

0
1

0
1

3
3

1
0

1
0

1
0

4
2

0
1

0
1

0
1

5
3

1
0

1
0

1
0

6
2

0
1

0
1

0
1

a
1
\b

1
0

1
2

3
4

5
6

0
2

0
1

0
1

0
1

1
0

1
2

3
2

3
2

2
1

2
3

2
3

2
3

3
0

3
2

3
2

3
2

4
1

2
3

2
3

2
3

5
0

3
2

3
2

3
2

6
1

2
3

2
3

2
3

a
1
\b

1
0

1
2

3
4

5
6

0
1

2
3

2
3

2
3

1
2

0
1

0
1

0
1

2
0

1
0

1
0

1
0

3
1

0
1

0
1

0
1

4
0

1
0

1
0

1
0

5
1

0
1

0
1

0
1

6
0

1
0

1
0

1
0

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
1

2
3

2
3

2
3

2
2

3
2

3
2

3
2

3
3

2
3

2
3

2
3

4
2

3
2

3
2

3
2

5
3

2
3

2
3

2
3

6
2

3
2

3
2

3
2

a
1
\b

1
0

1
2

3
4

5
6

0
2

3
2

3
2

3
2

1
0

1
0

1
0

1
0

2
1

0
1

0
1

0
1

3
0

1
0

1
0

1
0

4
1

0
1

0
1

0
1

5
0

1
0

1
0

1
0

6
1

0
1

0
1

0
1

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
2

3
2

3
2

3
2

2
3

2
3

2
3

2
3

3
2

3
2

3
2

3
2

4
3

2
3

2
3

2
3

5
2

3
2

3
2

3
2

6
3

2
3

2
3

2
3

a
1
\b

1
0

1
2

3
4

5
6

0
2

3
2

3
2

3
2

1
0

1
0

1
0

1
0

2
1

0
1

0
1

0
1

3
0

1
0

1
0

1
0

4
1

0
1

0
1

0
1

5
0

1
0

1
0

1
0

6
1

0
1

0
1

0
1

1

a
1
\b

1
0

1
2

3
4

5
6

0
2

0
1

0
1

0
1

1
0

1
2

3
2

3
2

2
1

2
3

2
3

2
3

3
0

3
2

3
2

3
2

4
1

2
3

2
3

2
3

5
0

3
2

3
2

3
2

6
1

2
3

2
3

2
3

a
1
\b

1
0

1
2

3
4

5
6

0
1

2
3

2
3

2
3

1
2

0
1

0
1

0
1

2
3

1
0

1
0

1
0

3
2

0
1

0
1

0
1

4
3

1
0

1
0

1
0

5
2

0
1

0
1

0
1

6
3

1
0

1
0

1
0

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
1

2
3

2
3

2
3

2
2

3
2

3
2

3
2

3
3

2
3

2
3

2
3

4
2

3
2

3
2

3
2

5
3

2
3

2
3

2
3

6
2

3
2

3
2

3
2

a
1
\b

1
0

1
2

3
4

5
6

0
2

3
2

3
2

3
2

1
0

1
0

1
0

1
0

2
1

0
1

0
1

0
1

3
0

1
0

1
0

1
0

4
1

0
1

0
1

0
1

5
0

1
0

1
0

1
0

6
1

0
1

0
1

0
1

a
1
\b

1
0

1
2

3
4

5
6

0
1

0
1

0
1

0
1

1
2

3
2

3
2

3
2

2
3

2
3

2
3

2
3

3
2

3
2

3
2

3
2

4
3

2
3

2
3

2
3

5
2

3
2

3
2

3
2

6
3

2
3

2
3

2
3

a
1
\b

1
0

1
2

3
4

5
6

0
3

2
3

2
3

2
3

1
0

1
0

1
0

1
0

2
1

0
1

0
1

0
1

3
0

1
0

1
0

1
0

4
1

0
1

0
1

0
1

5
0

1
0

1
0

1
0

6
1

0
1

0
1

0
1

a
1
\b

1
0

1
2

3
4

5
6

0
1

0
1

0
1

0
1

1
2

3
2

3
2

3
2

2
3

2
3

2
3

2
3

3
2

3
2

3
2

3
2

4
3

2
3

2
3

2
3

5
2

3
2

3
2

3
2

6
3

2
3

2
3

2
3

2

a
1
\b

1
0

1
2

3
4

5
6

0
1

2
0

1
0

1
0

1
2

0
1

0
1

0
1

2
3

1
0

1
0

1
0

3
2

0
1

0
1

0
1

4
3

1
0

1
0

1
0

5
2

0
1

0
1

0
1

6
3

1
0

1
0

1
0

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
2

3
2

3
2

1
1

2
3

2
3

2
3

2
0

3
2

3
2

3
2

3
1

2
3

2
3

2
3

4
0

3
2

3
2

3
2

5
1

2
3

2
3

2
3

6
0

3
2

3
2

3
2

a
1
\b

1
0

1
2

3
4

5
6

0
2

0
1

0
1

0
1

1
0

1
0

1
0

1
0

2
1

0
1

0
1

0
1

3
0

1
0

1
0

1
0

4
1

0
1

0
1

0
1

5
0

1
0

1
0

1
0

6
1

0
1

0
1

0
1

a
1
\b

1
0

1
2

3
4

5
6

0
1

2
3

2
3

2
3

1
2

3
2

3
2

3
2

2
3

2
3

2
3

2
3

3
2

3
2

3
2

3
2

4
3

2
3

2
3

2
3

5
2

3
2

3
2

3
2

6
3

2
3

2
3

2
3

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

2
0

1
0

1
0

1
0

3
1

0
1

0
1

0
1

4
0

1
0

1
0

1
0

5
1

0
1

0
1

0
1

6
0

1
0

1
0

1
0

a
1
\b

1
0

1
2

3
4

5
6

0
2

3
2

3
2

3
2

1
3

2
3

2
3

2
3

2
2

3
2

3
2

3
2

3
3

2
3

2
3

2
3

4
2

3
2

3
2

3
2

5
3

2
3

2
3

2
3

6
2

3
2

3
2

3
2

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

2
0

1
0

1
0

1
0

3
1

0
1

0
1

0
1

4
0

1
0

1
0

1
0

5
1

0
1

0
1

0
1

6
0

1
0

1
0

1
0

3

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
2

3
2

3
2

1
1

2
3

2
3

2
3

2
0

3
2

3
2

3
2

3
1

2
3

2
3

2
3

4
0

3
2

3
2

3
2

5
1

2
3

2
3

2
3

6
0

3
2

3
2

3
2

a
1
\b

1
0

1
2

3
4

5
6

0
2

0
1

0
1

0
1

1
3

1
0

1
0

1
0

2
2

0
1

0
1

0
1

3
3

1
0

1
0

1
0

4
2

0
1

0
1

0
1

5
3

1
0

1
0

1
0

6
2

0
1

0
1

0
1

a
1
\b

1
0

1
2

3
4

5
6

0
1

2
3

2
3

2
3

1
2

3
2

3
2

3
2

2
3

2
3

2
3

2
3

3
2

3
2

3
2

3
2

4
3

2
3

2
3

2
3

5
2

3
2

3
2

3
2

6
3

2
3

2
3

2
3

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

2
0

1
0

1
0

1
0

3
1

0
1

0
1

0
1

4
0

1
0

1
0

1
0

5
1

0
1

0
1

0
1

6
0

1
0

1
0

1
0

a
1
\b

1
0

1
2

3
4

5
6

0
2

3
2

3
2

3
2

1
3

2
3

2
3

2
3

2
2

3
2

3
2

3
2

3
3

2
3

2
3

2
3

4
2

3
2

3
2

3
2

5
3

2
3

2
3

2
3

6
2

3
2

3
2

3
2

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

2
0

1
0

1
0

1
0

3
1

0
1

0
1

0
1

4
0

1
0

1
0

1
0

5
1

0
1

0
1

0
1

6
0

1
0

1
0

1
0

a
1
\b

1
0

1
2

3
4

5
6

0
2

3
2

3
2

3
2

1
3

2
3

2
3

2
3

2
2

3
2

3
2

3
2

3
3

2
3

2
3

2
3

4
2

3
2

3
2

3
2

5
3

2
3

2
3

2
3

6
2

3
2

3
2

3
2

4

a
1
\b

1
0

1
2

3
4

5
6

0
2

0
1

0
1

0
1

1
3

1
0

1
0

1
0

2
2

0
1

0
1

0
1

3
3

1
0

1
0

1
0

4
2

0
1

0
1

0
1

5
3

1
0

1
0

1
0

6
2

0
1

0
1

0
1

a
1
\b

1
0

1
2

3
4

5
6

0
1

2
3

2
3

2
3

1
0

3
2

3
2

3
2

2
1

2
3

2
3

2
3

3
0

3
2

3
2

3
2

4
1

2
3

2
3

2
3

5
0

3
2

3
2

3
2

6
1

2
3

2
3

2
3

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

2
0

1
0

1
0

1
0

3
1

0
1

0
1

0
1

4
0

1
0

1
0

1
0

5
1

0
1

0
1

0
1

6
0

1
0

1
0

1
0

a
1
\b

1
0

1
2

3
4

5
6

0
2

3
2

3
2

3
2

1
3

2
3

2
3

2
3

2
2

3
2

3
2

3
2

3
3

2
3

2
3

2
3

4
2

3
2

3
2

3
2

5
3

2
3

2
3

2
3

6
2

3
2

3
2

3
2

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

2
0

1
0

1
0

1
0

3
1

0
1

0
1

0
1

4
0

1
0

1
0

1
0

5
1

0
1

0
1

0
1

6
0

1
0

1
0

1
0

a
1
\b

1
0

1
2

3
4

5
6

0
2

3
2

3
2

3
2

1
3

2
3

2
3

2
3

2
2

3
2

3
2

3
2

3
3

2
3

2
3

2
3

4
2

3
2

3
2

3
2

5
3

2
3

2
3

2
3

6
2

3
2

3
2

3
2

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

2
0

1
0

1
0

1
0

3
1

0
1

0
1

0
1

4
0

1
0

1
0

1
0

5
1

0
1

0
1

0
1

6
0

1
0

1
0

1
0

5

a
1
\b

1
0

1
2

3
4

5
6

0
0

2
3

2
3

2
3

1
1

3
2

3
2

3
2

2
0

2
3

2
3

2
3

3
1

3
2

3
2

3
2

4
0

2
3

2
3

2
3

5
1

3
2

3
2

3
2

6
0

2
3

2
3

2
3

a
1
\b

1
0

1
2

3
4

5
6

0
3

0
1

0
1

0
1

1
2

1
0

1
0

1
0

2
3

0
1

0
1

0
1

3
2

1
0

1
0

1
0

4
3

0
1

0
1

0
1

5
2

1
0

1
0

1
0

6
3

0
1

0
1

0
1

a
1
\b

1
0

1
2

3
4

5
6

0
2

3
2

3
2

3
2

1
3

2
3

2
3

2
3

2
2

3
2

3
2

3
2

3
3

2
3

2
3

2
3

4
2

3
2

3
2

3
2

5
3

2
3

2
3

2
3

6
2

3
2

3
2

3
2

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

2
0

1
0

1
0

1
0

3
1

0
1

0
1

0
1

4
0

1
0

1
0

1
0

5
1

0
1

0
1

0
1

6
0

1
0

1
0

1
0

a
1
\b

1
0

1
2

3
4

5
6

0
2

3
2

3
2

3
2

1
3

2
3

2
3

2
3

2
2

3
2

3
2

3
2

3
3

2
3

2
3

2
3

4
2

3
2

3
2

3
2

5
3

2
3

2
3

2
3

6
2

3
2

3
2

3
2

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

2
0

1
0

1
0

1
0

3
1

0
1

0
1

0
1

4
0

1
0

1
0

1
0

5
1

0
1

0
1

0
1

6
0

1
0

1
0

1
0

a
1
\b

1
0

1
2

3
4

5
6

0
2

3
2

3
2

3
2

1
3

2
3

2
3

2
3

2
2

3
2

3
2

3
2

3
3

2
3

2
3

2
3

4
2

3
2

3
2

3
2

5
3

2
3

2
3

2
3

6
2

3
2

3
2

3
2

6

a
1
\b

1
0

1
2

3
4

5
6

0
2

0
1

0
1

0
1

1
3

1
0

1
0

1
0

2
2

0
1

0
1

0
1

3
3

1
0

1
0

1
0

4
2

0
1

0
1

0
1

5
3

1
0

1
0

1
0

6
2

0
1

0
1

0
1

a
1
\b

1
0

1
2

3
4

5
6

0
1

2
3

2
3

2
3

1
0

3
2

3
2

3
2

2
1

2
3

2
3

2
3

3
0

3
2

3
2

3
2

4
1

2
3

2
3

2
3

5
0

3
2

3
2

3
2

6
1

2
3

2
3

2
3

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

2
0

1
0

1
0

1
0

3
1

0
1

0
1

0
1

4
0

1
0

1
0

1
0

5
1

0
1

0
1

0
1

6
0

1
0

1
0

1
0

a
1
\b

1
0

1
2

3
4

5
6

0
2

3
2

3
2

3
2

1
3

2
3

2
3

2
3

2
2

3
2

3
2

3
2

3
3

2
3

2
3

2
3

4
2

3
2

3
2

3
2

5
3

2
3

2
3

2
3

6
2

3
2

3
2

3
2

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

2
0

1
0

1
0

1
0

3
1

0
1

0
1

0
1

4
0

1
0

1
0

1
0

5
1

0
1

0
1

0
1

6
0

1
0

1
0

1
0

a
1
\b

1
0

1
2

3
4

5
6

0
2

3
2

3
2

3
2

1
3

2
3

2
3

2
3

2
2

3
2

3
2

3
2

3
3

2
3

2
3

2
3

4
2

3
2

3
2

3
2

5
3

2
3

2
3

2
3

6
2

3
2

3
2

3
2

a
1
\b

1
0

1
2

3
4

5
6

0
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

2
0

1
0

1
0

1
0

3
1

0
1

0
1

0
1

4
0

1
0

1
0

1
0

5
1

0
1

0
1

0
1

6
0

1
0

1
0

1
0

Table 5. The Grundy values for a k, l, 2-bipode Ba1,a2,b1,b2 .


