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Goal: identify each vertex of the graph by a code.
Codes can be integers, sets of integers, floats, . ..
= Use of a coloring to generate the codes.
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» Code of a vertex = the union of its and its neighbours’ colors
» Minimize the number of colors (parameter X;4)
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Distinguishing edge coloring (Harary and Plantholt, 1985)
» Edges are colored by an integer
» Code of a vertex = the union of the colors its incident edges
» Minimize the number of colors (parameter Xs)
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Union-distinguishing edge coloring
» Edges are colored by a set of integers
» Code of a vertex = the union of the colors its incident edges
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Union-distinguishing edge coloring
» Edges are colored by a set of integers

» Code of a vertex = the union of the colors its incident edges
» Minimize the number of colors (parameter X))
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= Only for graphs with connected components of size at least 3| 5,4,
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coloring!

234 o, |24

{2}

12}

4/14



Properties

A distinguishing edge coloring is a union-distinguishing edge

coloring!
An identifying coloring induces a union-distinguishing edge coloring.
{2,3,4} {2,4}

{1,2,3,4}

{1,2,4} {1,2}

4/14



Properties

A distinguishing edge coloring is a union-distinguishing edge
coloring!
An identifying coloring induces a union-distinguishing edge coloring.

{27374} {2,4} {274}

{2

12}

4/14



Properties

A distinguishing edge coloring is a union-distinguishing edge
coloring!

An identifying coloring induces a union-distinguishing edge coloring.
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Proposition
For every graph G, we have X (G) < min(Xs(G), Xi4(G)).
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Properties

Proposition
The complete graph K, of order n = 2 — 1 cannot be optimally
colored.
| {1
| {2}
= Only one vertex is
identified by a singleton
in Kok_1 = Kok_; needs
more than k colors
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Theorem
A path P, can be optimally colored. o o o o

Proof

Induction hypothesis on n =25 + ¢ (¢ < 2% —1): Py_; and P, can
be optimally colored (with conditions on the coloring).

{m.k +1} {1,k+1}
{1 L U IKUESY
P2;—1 Reversed Py

Theorem

For n >4, n#7, C, can be optimally colored. I>' I:}
Xu(C:-;) =3 and Xu(C7) =4,

Theorem

A complete binary tree of height at least 1 can be optimally colored.
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For every graph G(V, E), we have X (G) < [logo(|V|+1)] + 2.
Remark

Xy can only take three values!
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Proof

From a graph G :
1. Extract H, forest of stars subdivided at most once and
edge-subgraph of G;
2. Optimally color each component of H;

3. Color their disjoint union, H, with the optimal number of
colors plus one;
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Proof

Color the disjoint union of stars subdivided at most once with the
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Proof

From a graph G :
1. Extract H, forest of stars subdivided at most once and
edge-subgraph of G;
2. Optimally color each component of H,
3. Color their disjoint union, H, with the optimal number of
colors plus one;
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