A Vizing-like theorem for union vertex-distinguishing edge coloring

Nicolas Bousquet, Antoine Dailly, Éric Duchêne, Hamamache Kheddouci, Aline Parreau

> LIRIS, Université Lyon 1 BGW 2016

Goal: identify each vertex of the graph by a code.

Goal: identify each vertex of the graph by a *code*. Codes can be integers

Goal: identify each vertex of the graph by a *code*. Codes can be integers, sets of integers

Goal: identify each vertex of the graph by a *code*. Codes can be integers, sets of integers, floats, . . .

Goal: identify each vertex of the graph by a *code*. Codes can be integers, sets of integers, floats, . . . ⇒ Use of a coloring to generate the codes.

Identifying coloring (Parreau, 2012)

Identifying coloring (Parreau, 2012)

Vertices are colored by an integer

Identifying coloring (Parreau, 2012)

- Vertices are colored by an integer
- ► Code of a vertex = the union of its and its neighbours' colors

Identifying coloring (Parreau, 2012)

- Vertices are colored by an integer
- ► Code of a vertex = the union of its and its neighbours' colors
- ▶ Minimize the number of colors (parameter χ_{id})

Distinguishing edge coloring (Harary and Plantholt, 1985)

Distinguishing edge coloring (Harary and Plantholt, 1985)

▶ Edges are colored by an integer

Distinguishing edge coloring (Harary and Plantholt, 1985)

- Edges are colored by an integer
- ► Code of a vertex = the union of the colors its incident edges

Distinguishing edge coloring (Harary and Plantholt, 1985)

- Edges are colored by an integer
- ► Code of a vertex = the union of the colors its incident edges
- ▶ Minimize the number of colors (parameter χ_S)

Union-distinguishing edge coloring

Union-distinguishing edge coloring

► Edges are colored by a set of integers

Union-distinguishing edge coloring

- ▶ Edges are colored by a set of integers
- ► Code of a vertex = the union of the colors its incident edges

Union-distinguishing edge coloring

- Edges are colored by a set of integers
- ► Code of a vertex = the union of the colors its incident edges
- ▶ Minimize the number of colors (parameter χ_{\cup})

Union-distinguishing edge coloring

- Edges are colored by a set of integers
- ► Code of a vertex = the union of the colors its incident edges
- ▶ Minimize the number of colors (parameter χ_{\cup})

⇒ Only for graphs with connected components of size at least 3!

3/14

A distinguishing edge coloring is a union-distinguishing edge coloring!

A distinguishing edge coloring is a union-distinguishing edge coloring!

An identifying coloring induces a union-distinguishing edge coloring.

A distinguishing edge coloring is a union-distinguishing edge coloring!

An identifying coloring induces a union-distinguishing edge coloring.

A distinguishing edge coloring is a union-distinguishing edge coloring!

An identifying coloring induces a union-distinguishing edge coloring.

Proposition

For every graph G, we have $\chi_{\cup}(G) \leq min(\chi_S(G), \chi_{id}(G))$.

Suppose that we want to construct a union vertex-distinguishing edge coloring of a graph ${\it G}$ using ${\it k}$ colors.

Suppose that we want to construct a union vertex-distinguishing edge coloring of a graph G using k colors.

 $\{1,\ldots,k\}$ has 2^k-1 nonempty subsets, so : $|V(G)| \le 2^k-1$.

Suppose that we want to construct a union vertex-distinguishing edge coloring of a graph G using k colors.

 $\{1,\ldots,k\}$ has 2^k-1 nonempty subsets, so : $|V(G)| \le 2^k-1$.

Proposition

For every graph G, $\chi_{\cup}(G) \geq \lceil \log_2(|V(G)| + 1) \rceil$.

Suppose that we want to construct a union vertex-distinguishing edge coloring of a graph G using k colors.

$$\{1,\ldots,k\}$$
 has 2^k-1 nonempty subsets, so : $|V(G)| \le 2^k-1$.

Proposition

For every graph G, $\chi_{\cup}(G) \geq \lceil \log_2(|V(G)| + 1) \rceil$.

Definition

A graph G(V, E) is said to be optimally colored if $\chi_{\cup}(G) = \lceil \log_2(|V|+1) \rceil$.

Suppose that we want to construct a union vertex-distinguishing edge coloring of a graph G using k colors.

$$\{1,\ldots,k\}$$
 has 2^k-1 nonempty subsets, so : $|V(G)| \le 2^k-1$.

Proposition

For every graph G, $\chi_{\cup}(G) \geq \lceil \log_2(|V(G)| + 1) \rceil$.

Definition

A graph G(V, E) is said to be optimally colored if $\chi_{\cup}(G) = \lceil \log_2(|V| + 1) \rceil$.

Proposition

Proposition

Proposition

Proposition

Proposition

Proposition

Properties

Proposition

The complete graph K_n of order $n = 2^k - 1$ cannot be optimally colored.

 \Rightarrow Only one vertex is identified by a singleton in $K_{2^k-1} \Rightarrow K_{2^k-1}$ needs more than k colors

Theorem

A path P_n can be optimally colored.

Proof

Theorem

A path P_n can be optimally colored.

Proof

Induction hypothesis on $n=2^k+\ell$ ($\ell \leq 2^k-1$): P_{2^k-1} and P_ℓ can be optimally colored (with conditions on the coloring).

Theorem

A path P_n can be optimally colored.

Proof

Induction hypothesis on $n=2^k+\ell$ ($\ell \leq 2^k-1$): P_{2^k-1} and P_ℓ can be optimally colored (with conditions on the coloring).

Theorem

A path P_n can be optimally colored.

Proof

Induction hypothesis on $n=2^k+\ell$ ($\ell \leq 2^k-1$): P_{2^k-1} and P_ℓ can be optimally colored (with conditions on the coloring).

Theorem

A path P_n can be optimally colored.

Proof

Induction hypothesis on $n=2^k+\ell$ ($\ell \leq 2^k-1$): P_{2^k-1} and P_ℓ can be optimally colored (with conditions on the coloring).

Theorem

For $n \ge 4$, $n \ne 7$, C_n can be optimally colored. $\chi_{\square}(C_3) = 3$ and $\chi_{\square}(C_7) = 4$.

Theorem

A path P_n can be optimally colored.

Proof

Induction hypothesis on $n=2^k+\ell$ ($\ell \leq 2^k-1$): P_{2^k-1} and P_ℓ can be optimally colored (with conditions on the coloring).

Theorem

For $n \ge 4$, $n \ne 7$, C_n can be optimally colored. $\chi_{\square}(C_3) = 3$ and $\chi_{\square}(C_7) = 4$.

Theorem

A complete binary tree of height at least 1 can be optimally colored.

Theorem

For every graph G(V, E), we have $\chi_{\cup}(G) \leq \lceil \log_2(|V|+1) \rceil + 2$.

Remark

 χ_{\cup} can only take three values!

Theorem

For every graph G(V, E), we have $\chi_{\cup}(G) \leq \lceil \log_2(|V|+1) \rceil + 2$.

Remark

 χ_{\cup} can only take three values!

$\chi_{\cup}(G)$	$\lceil \log_2(V(G) +1) \rceil$	$\lceil \log_2(V(G) +1) \rceil + 1$	$\lceil \log_2(V(G) +1) \rceil + 2$

Theorem

For every graph G(V, E), we have $\chi_{\cup}(G) \leq \lceil \log_2(|V|+1) \rceil + 2$.

Remark

 χ_{\cup} can only take three values!

$\chi_{\cup}(G)$	$\lceil \log_2(V(G) +1) \rceil$	$\left\lceil \log_2(V(G) +1) \right\rceil + 1$	$\lceil \log_2(V(G) +1) \rceil + 2$
	Paths Cycles Complete binary trees	K_{2^k-1} C_3, C_7 C_4	

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

From a graph ${\it G}$:

From a graph G:

1. Extract *H*, forest of stars subdivided at most once and edge-subgraph of *G*;

From a graph G:

1. Extract *H*, forest of stars subdivided at most once and edge-subgraph of *G*;

- 1. Extract *H*, forest of stars subdivided at most once and edge-subgraph of *G*;
- 2. Optimally color each component of H;

- 1. Extract *H*, forest of stars subdivided at most once and edge-subgraph of *G*;
- 2. Optimally color each component of H;

- Extract H, forest of stars subdivided at most once and edge-subgraph of G;
- 2. Optimally color each component of H;
- 3. Color their disjoint union, *H*, with the optimal number of colors plus one;

3	4-7	8-15	16-31

Color the disjoint union of stars subdivided at most once with the optimal number of colors plus one:

Color 4 added

Color the disjoint union of stars subdivided at most once with the optimal number of colors plus one:

Color 4 added

Color the disjoint union of stars subdivided at most once with the optimal number of colors plus one:

3	4-7	8-15	16-31

Color 4 added Color 5 added

- 1. Extract *H*, forest of stars subdivided at most once and edge-subgraph of *G*;
- 2. Optimally color each component of *H*;
- 3. Color their disjoint union, *H*, with the optimal number of colors plus one;

- Extract H, forest of stars subdivided at most once and edge-subgraph of G;
- 2. Optimally color each component of H;
- 3. Color their disjoint union, *H*, with the optimal number of colors plus one;
- 4. Color G with the optimal number of colors plus two by using a new color for the edges of $G \setminus H$.

- 1. Extract *H*, forest of stars subdivided at most once and edge-subgraph of *G*;
- 2. Optimally color each component of H;
- 3. Color their disjoint union, *H*, with the optimal number of colors plus one;
- 4. Color G with the optimal number of colors plus two by using a new color for the edges of $G \setminus H$.

- 1. Extract *H*, forest of stars subdivided at most once and edge-subgraph of *G*;
- 2. Optimally color each component of H;
- 3. Color their disjoint union, *H*, with the optimal number of colors plus one;
- 4. Color G with the optimal number of colors plus two by using a new color for the edges of $G \setminus H$.

Theorem

For every graph G(V, E), we have

$$\lceil \log_2(|V|+1) \rceil \le \chi_{\cup}(G) \le \lceil \log_2(|V|+1) \rceil + 2.$$

Theorem

For every graph G(V, E), we have $\lceil \log_2(|V|+1) \rceil \le \chi_{\cup}(G) \le \lceil \log_2(|V|+1) \rceil + 2$.

$\chi_{\cup}(G)$	$\lceil \log_2(V(G) +1) \rceil$	$\left\lceil \log_2(V(G) +1) \right\rceil + 1$	$\lceil \log_2(V(G) +1) \rceil + 2$
	Paths Cycles Complete binary trees	$K_{2^{k}-1}$ C_{3}, C_{7} $C_{3} \leftarrow C_{3}$	

13/14

Theorem

For every graph G(V, E), we have $\lceil \log_2(|V|+1) \rceil \le \chi_{\cup}(G) \le \lceil \log_2(|V|+1) \rceil + 2$.

$\chi_{\cup}(G)$	$\lceil \log_2(V(G) +1) \rceil$	$\lceil \log_2(V(G) +1) \rceil + 1$	$\lceil \log_2(V(G) +1) \rceil + 2$
	Paths Cycles Complete binary trees Stars subdivided at most once	K_{2^k-1} C_3, C_7 Forest of stars subdivided at most once	

Theorem

For every graph G(V, E), we have $\lceil \log_2(|V|+1) \rceil \le \chi_{\cup}(G) \le \lceil \log_2(|V|+1) \rceil + 2$.

$\chi_{\cup}(G)$	$\lceil \log_2(V(G) +1) \rceil$	$\lceil \log_2(V(G) +1) \rceil + 1$	$\lceil \log_2(V(G) +1) \rceil + 2$
	Paths Cycles Complete binary trees	K_{2^k-1} C_3, C_7 Forest of stars subdivided at most once	
	Stars subdivided at most once	Hamiltonian graphs Edge-supergraphs of stars subdivided at most once	

Theorem

For every graph G(V, E), we have $\lceil \log_2(|V|+1) \rceil \le \chi_{\cup}(G) \le \lceil \log_2(|V|+1) \rceil + 2$.

$\chi_{\cup}(G)$	$\lceil \log_2(V(G) +1) \rceil$	$\left\lceil \log_2(V(G) +1) \right\rceil + 1$	$\lceil \log_2(V(G) +1) \rceil + 2$
	Paths Cycles Complete binary trees Stars subdivided at most once	K ₂ ^k −1 C ₃ , C ₇ Forest of stars subdivided at most once Hamiltonian graphs Edge-supergraphs of stars subdivided at most once	?

Conjecture

For every graph G(V, E), we have $\chi_{\cup}(G) \leq \lceil \log_2(|V|+1) \rceil + 1$.

Conjecture

For every graph G(V, E), we have $\chi_{\cup}(G) \leq \lceil \log_2(|V|+1) \rceil + 1$.

Possible ways

- 1. Proving that any tree can be optimally colored (connected case).
- 2. Proving that a forest of stars subdivided at most once can be optimally colored.

Conjecture

For every graph G(V, E), we have $\chi_{\cup}(G) \leq \lceil \log_2(|V|+1) \rceil + 1$.

Possible ways

- 1. Proving that any tree can be optimally colored (connected case).
- 2. Proving that a forest of stars subdivided at most once can be optimally colored.

Variants

- 1. With a proper coloring?
- 2. Distinguishing only adjacent vertices?

Conjecture

For every graph G(V, E), we have $\chi_{\cup}(G) \leq \lceil \log_2(|V|+1) \rceil + 1$.

Possible ways

- 1. Proving that any tree can be optimally colored (connected case).
- 2. Proving that a forest of stars subdivided at most once can be optimally colored.

Variants

- 1. With a proper coloring?
- 2. Distinguishing only adjacent vertices?

