Subtraction Games on Graphs

Antoine Dailly (LIMOS, Clermont-Ferrand)

With Laurent Beaudou (LIMOS), Kyle Burke (Plymouth State University), Pierre Coupechoux (LAAS), Sylvain Gravier (Institut Fourier), Julien Moncel (LAAS), Aline Parreau (LIRIS), Éric Sopena (LaBRI).

Most of this work was realized in the ANR project GAG.

CGTCIV, January 25, 2023

Subtraction games

Subtraction game SUB(S)

Played on a heap of counters.
Removing k counters $\Leftrightarrow k \in S$.

Subtraction games

Subtraction game SUB(S)

Played on a heap of counters.
Removing k counters $\Leftrightarrow k \in S$.

Theorem (Folklore)
If S is finite, then, the sequence of $\operatorname{SUB}(S)$ is ultimately periodic.

Theorem (Albert, Nowakowski, Wolfe, 2007)
If S is finite, then, the sequence of $\operatorname{SUB}(\mathbb{N} \backslash S)$ is ultimately arithmetic periodic.

Subtraction games

Subtraction game SUB(S)

Played on a heap of counters.
Removing k counters $\Leftrightarrow k \in S$.

Theorem (Folklore)
If S is finite, then, the sequence of $\operatorname{SUB}(S)$ is ultimately periodic.

Theorem (Albert, Nowakowski, Wolfe, 2007)
If S is finite, then, the sequence of $\operatorname{SUB}(\mathbb{N} \backslash S)$ is ultimately arithmetic periodic.

How to define those games on other structures?

From heaps of counters to graphs

IIIIII
$0-0-0-0-0-0-0$

Playing on a heap a graph

From heaps of counters to graphs

|IIIIII

Playing on a heap

Playing on a graph

- Removing counters \rightarrow Removing a connected subgraph

From heaps of counters to graphs

Playing on a heap

Playing on a path

- Removing counters \rightarrow Removing a connected subgraph

From heaps of counters to graphs

〇. $0-0-0-0-0$ 0-0
Playing on a heap \sim Playing on a path $\sim \begin{gathered}\text { Playing on } \\ \text { a graph }\end{gathered}$

- Removing counters \rightarrow Removing a connected subgraph
- Dividing a heap \rightarrow Disconnecting a graph

From heaps of counters to graphs

II

1
0
0 0

Playing on a heap \sim Playing on a path $\sim \begin{gathered}\text { Playing on } \\ \text { a graph }\end{gathered}$

- Removing counters \rightarrow Removing a connected subgraph
- Dividing a heap \rightarrow Disconnecting a graph

From heaps of counters to graphs

- Removing counters \rightarrow Removing a connected subgraph
- Dividing a heap \rightarrow Disconnecting a graph

Connected subtraction game CSG(S)

Removing a connected subgraph of order k without disconnecting the graph $\Leftrightarrow k \in S$

From heaps of counters to graphs

- Removing counters \rightarrow Removing a connected subgraph
- Dividing a heap \rightarrow Disconnecting a graph

Connected subtraction game CSG(S)

Removing a connected subgraph of order k without disconnecting the graph $\Leftrightarrow k \in S$

First introduced for octal games on graphs [BCDGMPS, 2018]

Complexity of subtraction games

Theorem [Burke and D., 2023+]
If S is finite and $1 \notin S$, then $\operatorname{CSG}(S)$ is PSPACE-complete.

Complexity of subtraction games

Theorem [Burke and D., 2023+]
If S is finite and $1 \notin S$, then $\operatorname{CSG}(S)$ is PSPACE-complete.

Reduction from Node-Kayles
$M=\max (S)$, here $M=4$

Complexity of subtraction games

Theorem [Burke and D., 2023+]
If S is finite and $1 \notin S$, then $\operatorname{CSG}(S)$ is PSPACE-complete.

Reduction from Node-Kayles
$M=\max (S)$, here $M=4$

Complexity of subtraction games

Theorem [Burke and D., 2023+]
If S is finite and $1 \notin S$, then $\operatorname{CSG}(S)$ is PSPACE-complete.

Reduction from Node-Kayles
$M=\max (S)$, here $M=4$

Complexity of subtraction games

Theorem [Burke and D., 2023+]
If S is finite and $1 \notin S$, then $\operatorname{CSG}(S)$ is PSPACE-complete.

Reduction from Node-Kayles
$M=\max (S)$, here $M=4$

Complexity of subtraction games

Theorem [Burke and D., 2023+]
If S is finite and $1 \notin S$, then $\operatorname{CSG}(S)$ is PSPACE-complete.

Reduction from Node-Kayles
$M=\max (S)$, here $M=4$

Complexity of subtraction games

Theorem [Burke and D., 2023+]
If S is finite and $1 \notin S$, then $\operatorname{CSG}(S)$ is PSPACE-complete.

Reduction from Node-Kayles
$M=\max (S)$, here $M=4$

Complexity of subtraction games

Theorem [Burke and D., 2023+]
If S is finite and $1 \notin S$, then $\operatorname{CSG}(S)$ is PSPACE-complete.

Reduction from Node-Kayles
$M=\max (S)$, here $M=4$

Complexity of subtraction games

Theorem [Burke and D., 2023+]
If S is finite and $1 \notin S$, then $\operatorname{CSG}(S)$ is PSPACE-complete.

Reduction from Node-Kayles
$M=\max (S)$, here $M=4$

Defining regularity for octal games on graphs

- Subtraction games \rightarrow Grundy sequence
- Subtraction games on graphs \rightarrow ?

Defining regularity for octal games on graphs

- Subtraction games \rightarrow Grundy sequence
- Subtraction games on graphs \rightarrow ?

Idea
Study the evolution of the Grundy values when appending a path to a given vertex.

$$
(k=0)
$$

Defining regularity for octal games on graphs

- Subtraction games \rightarrow Grundy sequence
- Subtraction games on graphs \rightarrow ?

Idea
Study the evolution of the Grundy values when appending a path to a given vertex.

$$
(k=1)
$$

Defining regularity for octal games on graphs

- Subtraction games \rightarrow Grundy sequence
- Subtraction games on graphs \rightarrow ?

Idea
Study the evolution of the Grundy values when appending a path to a given vertex.

Defining regularity for octal games on graphs

- Subtraction games \rightarrow Grundy sequence
- Subtraction games on graphs \rightarrow ?

Idea
Study the evolution of the Grundy values when appending a path to a given vertex.

Defining regularity for octal games on graphs

- Subtraction games \rightarrow Grundy sequence
- Subtraction games on graphs \rightarrow ?

Idea
Study the evolution of the Grundy values when appending a path to a given vertex.

\rightarrow Already used for Node-Kayles [Fleischer and Trippen, 2004] and Arc-Kayles [Huggan and Stevens, 2016]

A periodicity result for connected subtraction games

Theorem [D., Moncel, Parreau, 2019]
If S is finite, , then, for every graph G and vertex u, the sequence of $\mathcal{G}\left(G \mathfrak{u} \cdot P_{k}\right)$ for $\operatorname{CSG}(S)$ is ultimately periodic.

A periodicity result for connected subtraction games

Theorem [D., Moncel, Parreau, 2019]
If S is finite, , then, for every graph G and vertex u, the sequence of $\mathcal{G}\left(G \because \cdot P_{k}\right)$ for $\operatorname{CSG}(S)$ is ultimately periodic.

Proof idea
Induction on $|G|$.

1. $|G| \in\{0,1\}$: paths

A periodicity result for connected subtraction games

Theorem [D., Moncel, Parreau, 2019]
If S is finite, , then, for every graph G and vertex u, the sequence of $\mathcal{G}\left(G \bullet \cdot P_{k}\right)$ for $\operatorname{CSG}(S)$ is ultimately periodic.

Proof idea

Induction on $|G|$.

1. $|G| \in\{0,1\}$: paths
2. Otherwise, three possible kinds of moves:
2.1 Playing on $P_{k} \rightarrow|S|$ different moves
2.2 Playing on G without removing $u \rightarrow$ at most $2^{|G|-1}$ different moves
2.3 Emptying $G \rightarrow$ at most $|S|$ different moves

A periodicity result for connected subtraction games

Theorem [D., Moncel, Parreau, 2019]
If S is finite, , then, for every graph G and vertex u, the sequence of $\mathcal{G}\left(G_{\dot{u}} \cdot P_{k}\right)$ for $\operatorname{CSG}(S)$ is ultimately periodic.

Proof idea

Induction on $|G|$.

1. $|G| \in\{0,1\}$: paths
2. Otherwise, three possible kinds of moves:
2.1 Playing on $P_{k} \rightarrow|S|$ different moves
2.2 Playing on G without removing $u \rightarrow$ at most $2^{|G|-1}$ different moves
2.3 Emptying $G \rightarrow$ at most $|S|$ different moves
$\Rightarrow \mathcal{G}(G) \leq C$

A periodicity result for connected subtraction games

Theorem [D., Moncel, Parreau, 2019]
If S is finite, , then, for every graph G and vertex u, the sequence of $\mathcal{G}\left(G \bullet \cdot P_{k}\right)$ for $\operatorname{CSG}(S)$ is ultimately periodic.

Proof idea

Induction on $|G|$.

1. $|G| \in\{0,1\}$: paths
2. Otherwise, three possible kinds of moves:
2.1 Playing on $P_{k} \rightarrow|S|$ different moves
2.2 Playing on G without removing $u \rightarrow$ at most $2^{|G|-1}$ different moves
2.3 Emptying $G \rightarrow$ at most $|S|$ different moves
$\Rightarrow \mathcal{G}(G) \leq C$
Every move leads to a periodic sequence, by mex computation, we have the result.

Regularity results

Game	Graph and vertex u	Regularity	Reference

Regularity results

Game	Graph and vertex u	Regularity	Reference
Every CSG $(S$ finite $)$	Every graph G, every vertex u	Ultimate periodicity	D., Moncel, Parreau (2019)

Regularity results

Game	Graph and vertex u	Regularity	Reference
Every CSG (S finite)	Every graph G, every vertex u	Ultimate periodicity	D., Moncel, Parreau (2019)
$\begin{gathered} \operatorname{CSG}(S), \\ S=\{1, \ldots, N\} \end{gathered}$	Star $K_{1, n}, u$ central vertex	Period $N+1$	D., Moncel, Parreau (2019)
		Period $N+1$ Preperiod 0 or $N+1$	

Regularity results

Game	Graph and vertex u	Regularity	Reference
Every CSG (S finite)	Every graph G, every vertex u	Ultimate periodicity	D., Moncel, Parreau (2019)
$\begin{gathered} \operatorname{CSG}(S), \\ S=\{1, \ldots, N\} \end{gathered}$	Star $K_{1, n}, u$ central vertex	Period $N+1$	D., Moncel, Parreau (2019)
		Period $N+1$ Preperiod 0 or $N+1$	
CSG($\{1,2,3\}$)	Any subdivided star, u central vertex or leaf	Period $N+1=4$	D., Moncel, Parreau (2019)
$\operatorname{CSG}(\{1,2\})$		Period $N+1=3$	$\begin{gathered} \text { BCDGMPS } \\ (2018) \end{gathered}$

Regularity results

Game	Graph and vertex u	Regularity	Reference
Every CSG (S finite)	Every graph G, every vertex u	Ultimate periodicity	D., Moncel, Parreau (2019)
$\begin{gathered} \operatorname{CSG}(S), \\ S=\{1, \ldots, N\} \end{gathered}$	Star $K_{1, n}, u$ central vertex	Period $N+1$	D., Moncel, Parreau (2019)
	on on on o	Period $N+1$ Preperiod 0 or $N+1$	
CSG(\{1,2,3\})	Any subdivided star, u central vertex or leaf	$\begin{gathered} \text { Period } \\ N+1=4 \end{gathered}$	D., Moncel, Parreau (2019)
$\operatorname{CSG}(\{1,2\})$	central vertex or leaf Any subdivided bistar, u central vertex or leaf	Period $N+1=3$	Beaudou, Coupechoux D., Gravier, Moncel, Parreau, Sopena (2018)

$\operatorname{CSG}(\{1,2\})$ on subdivided stars in polynomial-time

CSG $(\{1,2\})$ on subdivided stars in polynomial-time

Lemma (BCDGMPS18)

In $\operatorname{CSG}(\{1,2\})$, we can reduce the paths of a subdivided stars to their length modulo 3.

CSG $(\{1,2\})$ on subdivided stars in polynomial-time

Lemma (BCDGMPS18)

In $\operatorname{CSG}(\{1,2\})$, we can reduce the paths of a subdivided stars to their length modulo 3.

CSG $(\{1,2\})$ on subdivided stars in polynomial-time

Lemma (BCDGMPS18)

In $\operatorname{CSG}(\{1,2\})$, we can reduce the paths of a subdivided stars to their length modulo 3.

CSG $(\{1,2\})$ on subdivided stars in polynomial-time

Lemma (BCDGMPS18)

In $\operatorname{CSG}(\{1,2\})$, we can reduce the paths of a subdivided stars to their length modulo 3.

CSG $(\{1,2\})$ on subdivided stars in polynomial-time

Lemma (BCDGMPS18)

In $\operatorname{CSG}(\{1,2\})$, we can reduce the paths of a subdivided stars to their length modulo 3.

CSG $(\{1,2\})$ on subdivided stars in polynomial-time

Lemma (BCDGMPS18)

In $\operatorname{CSG}(\{1,2\})$, we can reduce the paths of a subdivided stars to their length modulo 3.

Theorem (BCDGMPS18)
There is a polynomial-time algorithm computing the Grundy value of a subdivided star in $\operatorname{CSG}(\{1,2\})$.

CSG $(\{1,2\})$ on subdivided stars in polynomial-time

Lemma (BCDGMPS18)

In $\operatorname{CSG}(\{1,2\})$, we can reduce the paths of a subdivided stars to their length modulo 3 .

Theorem (BCDGMPS18)
There is a polynomial-time algorithm computing the Grundy value of a subdivided star in $\operatorname{CSG}(\{1,2\})$.

CSG $(\{1,2\})$ on subdivided stars in polynomial-time

Lemma (BCDGMPS18)

In $\operatorname{CSG}(\{1,2\})$, we can reduce the paths of a subdivided stars to their length modulo 3 .

Theorem (BCDGMPS18)
There is a polynomial-time algorithm computing the Grundy value of a subdivided star in $\operatorname{CSG}(\{1,2\})$.

$\operatorname{CSG}(\{1,2\})$ on subdivided bistars

Paths reduction in bistars
Periodicity \Rightarrow reduction of stars' paths.

$\operatorname{CSG}(\{1,2\})$ on subdivided bistars

Paths reduction in bistars
Periodicity \Rightarrow reduction of stars' paths.

$\operatorname{CSG}(\{1,2\})$ on subdivided bistars

Paths reduction in bistars
Periodicity \Rightarrow reduction of stars' paths.

$\operatorname{CSG}(\{1,2\})$ on subdivided bistars

Paths reduction in bistars
Periodicity \Rightarrow reduction of stars' paths.
Reduction of the central path.

$\operatorname{CSG}(\{1,2\})$ on subdivided bistars

Paths reduction in bistars
Periodicity \Rightarrow reduction of stars' paths.
Reduction of the central path.

$\operatorname{CSG}(\{1,2\})$ on subdivided bistars

Paths reduction in bistars
Periodicity \Rightarrow reduction of stars' paths.
Reduction of the central path.

$\operatorname{CSG}(\{1,2\})$ on subdivided bistars

Paths reduction in bistars
Periodicity \Rightarrow reduction of stars' paths.
Reduction of the central path.

Theorem [BCDGMPS, 2018]

There is a polynomial-time algorithm computing the Grundy value of a subdivided bistar in $\operatorname{CSG}(\{1,2\})$, using two refinements of the nim-sum.

CSG $(\{1,2\})$ on subdivided bistars

Paths reduction in bistars
Periodicity \Rightarrow reduction of stars' paths.
Reduction of the central path.

Theorem [BCDGMPS, 2018]

There is a polynomial-time algorithm computing the Grundy value of a subdivided bistar in $\operatorname{CSG}(\{1,2\})$, using two refinements of the nim-sum.

Reduction of paths for $\operatorname{CSG}(\{1,2\})$

Paths

CSG $(\{1,2\})$ on subdivided bistars

Paths reduction in bistars
Periodicity \Rightarrow reduction of stars' paths.
Reduction of the central path.

Theorem [BCDGMPS, 2018]

There is a polynomial-time algorithm computing the Grundy value of a subdivided bistar in $\operatorname{CSG}(\{1,2\})$, using two refinements of the nim-sum.

Reduction of paths for $\operatorname{CSG}(\{1,2\})$

CSG $(\{1,2\})$ on subdivided bistars

Paths reduction in bistars
Periodicity \Rightarrow reduction of stars' paths.
Reduction of the central path.

Theorem [BCDGMPS, 2018]

There is a polynomial-time algorithm computing the Grundy value of a subdivided bistar in $\operatorname{CSG}(\{1,2\})$, using two refinements of the nim-sum.

Reduction of paths for $\operatorname{CSG}(\{1,2\})$

CSG $(\{1,2\})$ on subdivided bistars

Paths reduction in bistars
Periodicity \Rightarrow reduction of stars' paths.
Reduction of the central path.

Theorem [BCDGMPS, 2018]

There is a polynomial-time algorithm computing the Grundy value of a subdivided bistar in $\operatorname{CSG}(\{1,2\})$, using two refinements of the nim-sum.

Reduction of paths for $\operatorname{CSG}(\{1,2\})$

$\operatorname{CSG}(\{1,2\})$ on trees?

Proposition
The reduction of paths does not work in trees:

$\operatorname{CSG}(\{1,2\})$ on trees?

Proposition
The reduction of paths does not work in trees:

Unbounded values?
The following caterpillar has Grundy value 10:

A few other games

CSG(\{2\})
Arc-Kayles without disconnecting the graph.

A few other games

CSG(\{2\})
Arc-Kayles without disconnecting the graph.

- On trees and $2 \times n$ grids: every possible move will be played, so no strategy...

A few other games

CSG(\{2\})
Arc-Kayles without disconnecting the graph.

- On trees and $2 \times n$ grids: every possible move will be played, so no strategy...
- On $3 \times n$ grids: always possible to empty the grid!

A few other games

CSG(\{2\})
Arc-Kayles without disconnecting the graph.

- On trees and $2 \times n$ grids: every possible move will be played, so no strategy...
- On $3 \times n$ grids: always possible to empty the grid!
- Newsflash: PSPACE-complete on bipartite graphs, split graphs and graphs of any given girth!

A few other games

CSG(\{2\})

Arc-Kayles without disconnecting the graph.

- On trees and $2 \times n$ grids: every possible move will be played, so no strategy...
- On $3 \times n$ grids: always possible to empty the grid!
- Newsflash: PSPACE-complete on bipartite graphs, split graphs and graphs of any given girth!

Adjoining integers
We can adjoin M to S if $\mathcal{G}(G)$ is the same for $\operatorname{CSG}(S)$ and $\operatorname{CSG}(S \cup\{M\})$

Theorem [D. Moncel, Parreau, 2019]
Let G be a subdivided star. Then, $\mathcal{G}(G)$ is the same for $\operatorname{CSG}(\{1,2\})$ and $\operatorname{CSG}(\{1,2,4\})$.

A few other games

CSG(\{2\})

Arc-Kayles without disconnecting the graph.

- On trees and $2 \times n$ grids: every possible move will be played, so no strategy...
- On $3 \times n$ grids: always possible to empty the grid!
- Newsflash: PSPACE-complete on bipartite graphs, split graphs and graphs of any given girth!

Adjoining integers
We can adjoin M to S if $\mathcal{G}(G)$ is the same for $\operatorname{CSG}(S)$ and $\operatorname{CSG}(S \cup\{M\})$

Theorem [D. Moncel, Parreau, 2019]
Let G be a subdivided star. Then, $\mathcal{G}(G)$ is the same for $\operatorname{CSG}(\{1,2\})$ and $\operatorname{CSG}(\{1,2,4\})$.

However, this is not always possible, even on subdivided stars!

Final words

Some interesting open problems

Final words

Some interesting open problems

1. Complexity of $\operatorname{CSG}(S)$ when $1 \in S$
2. Regularity of $\operatorname{CSG}(\mathbb{N} \backslash S)$
3. Adjoining integers to S : when is it possible?

Final words

Some interesting open problems

1. Complexity of $\operatorname{CSG}(S)$ when $1 \in S$
2. Regularity of $\operatorname{CSG}(\mathbb{N} \backslash S)$
3. Adjoining integers to S : when is it possible?
4. $\operatorname{CSG}(\{1, \ldots, N\})$ for $N \geq 4$ on subdivided stars: can we still reduce paths?
5. $\operatorname{CSG}(\{1,2\})$ on trees: which regularity?
6. $\operatorname{CSG}(\{1,2\})$ on trees: are Grundy values bounded?

Final words

Some interesting open problems

1. Complexity of $\operatorname{CSG}(S)$ when $1 \in S$
2. Regularity of $\operatorname{CSG}(\mathbb{N} \backslash S)$
3. Adjoining integers to S : when is it possible?
4. $\operatorname{CSG}(\{1, \ldots, N\})$ for $N \geq 4$ on subdivided stars: can we still reduce paths?
5. $\operatorname{CSG}(\{1,2\})$ on trees: which regularity?
6. $\operatorname{CSG}(\{1,2\})$ on trees: are Grundy values bounded?
7. $\operatorname{CSG}(\{2\})$ on larger grids: will they still be emptied?
8. $\operatorname{CSG}(\{N\})$ for $N \geq 3$ on trees: is there some strategy?

Final words

Some interesting open problems

1. Complexity of $\operatorname{CSG}(S)$ when $1 \in S$
2. Regularity of $\operatorname{CSG}(\mathbb{N} \backslash S)$
3. Adjoining integers to S : when is it possible?
4. $\operatorname{CSG}(\{1, \ldots, N\})$ for $N \geq 4$ on subdivided stars: can we still reduce paths?
5. $\operatorname{CSG}(\{1,2\})$ on trees: which regularity?
6. $\operatorname{CSG}(\{1,2\})$ on trees: are Grundy values bounded?
7. $\operatorname{CSG}(\{2\})$ on larger grids: will they still be emptied?
8. $\operatorname{CSG}(\{N\})$ for $N \geq 3$ on trees: is there some strategy?

