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Subtraction games

Played on a heap of counters.
Removing k counters ⇔ k ∈ S.

Subtraction game SUB(S)

If S is finite, then, the sequence of SUB(S) is ultimately periodic.

Theorem (Folklore)

If S is finite, then, the sequence of SUB(N \ S) is ultimately
arithmetic periodic.

Theorem (Albert, Nowakowski, Wolfe, 2007)

How to define those games on other structures?
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From heaps of counters to graphs

Playing on a heap ∼ Playing on a path ∼ Playing on
a graph

▶ Removing counters → Removing a connected subgraph
▶ Dividing a heap → Disconnecting a graph

Removing a connected subgraph of order k without disconnecting
the graph ⇔ k ∈ S

Connected subtraction game CSG(S)

First introduced for octal games on graphs [BCDGMPS, 2018]
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Complexity of subtraction games

If S is finite and 1 /∈ S, then CSG(S) is PSPACE-complete.

Theorem [Burke and D., 2023+]

Reduction from Node-Kayles
M = max(S), here M = 4

×

×

×

×
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Defining regularity for octal games on graphs

▶ Subtraction games → Grundy sequence
▶ Subtraction games on graphs → ?

Idea
Study the evolution of the Grundy values when appending a path
to a given vertex.

G u Pk =
u

(k = 0)(k = 1)(k = 2)(etc)

→ Already used for Node-Kayles [Fleischer and Trippen, 2004]
and Arc-Kayles [Huggan and Stevens, 2016]

5/12



Defining regularity for octal games on graphs

▶ Subtraction games → Grundy sequence
▶ Subtraction games on graphs → ?

Idea
Study the evolution of the Grundy values when appending a path
to a given vertex.

G u Pk =
u

(k = 0)

(k = 1)(k = 2)(etc)

→ Already used for Node-Kayles [Fleischer and Trippen, 2004]
and Arc-Kayles [Huggan and Stevens, 2016]

5/12



Defining regularity for octal games on graphs

▶ Subtraction games → Grundy sequence
▶ Subtraction games on graphs → ?

Idea
Study the evolution of the Grundy values when appending a path
to a given vertex.

G u Pk =
u

(k = 0)

(k = 1)

(k = 2)(etc)

→ Already used for Node-Kayles [Fleischer and Trippen, 2004]
and Arc-Kayles [Huggan and Stevens, 2016]

5/12



Defining regularity for octal games on graphs

▶ Subtraction games → Grundy sequence
▶ Subtraction games on graphs → ?

Idea
Study the evolution of the Grundy values when appending a path
to a given vertex.

G u Pk =
u

(k = 0)(k = 1)

(k = 2)

(etc)

→ Already used for Node-Kayles [Fleischer and Trippen, 2004]
and Arc-Kayles [Huggan and Stevens, 2016]

5/12



Defining regularity for octal games on graphs

▶ Subtraction games → Grundy sequence
▶ Subtraction games on graphs → ?

Idea
Study the evolution of the Grundy values when appending a path
to a given vertex.

G u Pk =
u

(k = 0)(k = 1)(k = 2)

(etc)

→ Already used for Node-Kayles [Fleischer and Trippen, 2004]
and Arc-Kayles [Huggan and Stevens, 2016]

5/12



Defining regularity for octal games on graphs

▶ Subtraction games → Grundy sequence
▶ Subtraction games on graphs → ?

Idea
Study the evolution of the Grundy values when appending a path
to a given vertex.

G u Pk =
u

(k = 0)(k = 1)(k = 2)

(etc)

→ Already used for Node-Kayles [Fleischer and Trippen, 2004]
and Arc-Kayles [Huggan and Stevens, 2016]

5/12



A periodicity result for connected subtraction games

If S is finite, , then, for every graph G and vertex u, the sequence
of G(G u Pk) for CSG(S) is ultimately periodic.

Theorem [D., Moncel, Parreau, 2019]

Proof idea
Induction on |G |.

1. |G | ∈ {0, 1}: paths

2. Otherwise, three possible kinds of moves:
2.1 Playing on Pk → |S| different moves
2.2 Playing on G without removing u → at most 2|G|−1 different

moves
2.3 Emptying G → at most |S| different moves

⇒ G(G) ≤ C
Every move leads to a periodic sequence, by mex
computation, we have the result.
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Regularity results

Game Graph and vertex u Regularity Reference

Every CSG
(S finite)

D., Moncel,
Parreau (2019)Every graph G , every vertex u Ultimate

periodicity

CSG(S),
S = {1, ..., N}

D., Moncel,
Parreau (2019)

Star K1,n, u central vertex

u
ℓk

Period N + 1

Period N + 1
Preperiod
0 or N + 1

CSG({1, 2, 3})
D., Moncel,

Parreau (2019)Any subdivided star, u
central vertex or leaf

Period
N + 1 = 4

CSG({1, 2}) Period
N + 1 = 3

BCDGMPS
(2018)

CSG({1, 2}) Period
N + 1 = 3Any subdivided bistar,

u central vertex or leaf

Beaudou,
Coupechoux
D., Gravier,

Moncel, Parreau,
Sopena (2018)
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CSG({1, 2}) on subdivided stars in polynomial-time

In CSG({1, 2}), we can reduce the paths of a subdivided stars to
their length modulo 3.

Lemma (BCDGMPS18)

Number of paths of length 2

N
um

be
ro

fp
at

hs

∅

0
1
2
3
4
5
...

2p
2p + 1

0 1 2 3 4 5 . . . 2p 2p + 1
0
1
2 0
0 1 2
1 2 0 1
0 3 1 2 0
1 2 0 3 1 2

0 3 1 2 0 3 (03)∗ 0
1 2 0 3 1 2 (12)∗ 1 2

There is a polynomial-time algorithm computing the Grundy
value of a subdivided star in CSG({1, 2}).

Theorem (BCDGMPS18)

8/12



CSG({1, 2}) on subdivided stars in polynomial-time

In CSG({1, 2}), we can reduce the paths of a subdivided stars to
their length modulo 3.

Lemma (BCDGMPS18)

Number of paths of length 2

N
um

be
ro

fp
at

hs

∅

0
1
2
3
4
5
...

2p
2p + 1

0 1 2 3 4 5 . . . 2p 2p + 1
0
1
2 0
0 1 2
1 2 0 1
0 3 1 2 0
1 2 0 3 1 2

0 3 1 2 0 3 (03)∗ 0
1 2 0 3 1 2 (12)∗ 1 2

There is a polynomial-time algorithm computing the Grundy
value of a subdivided star in CSG({1, 2}).

Theorem (BCDGMPS18)

8/12



CSG({1, 2}) on subdivided stars in polynomial-time

In CSG({1, 2}), we can reduce the paths of a subdivided stars to
their length modulo 3.

Lemma (BCDGMPS18)

Number of paths of length 2

N
um

be
ro

fp
at

hs

∅

0
1
2
3
4
5
...

2p
2p + 1

0 1 2 3 4 5 . . . 2p 2p + 1
0
1
2 0
0 1 2
1 2 0 1
0 3 1 2 0
1 2 0 3 1 2

0 3 1 2 0 3 (03)∗ 0
1 2 0 3 1 2 (12)∗ 1 2

There is a polynomial-time algorithm computing the Grundy
value of a subdivided star in CSG({1, 2}).

Theorem (BCDGMPS18)

8/12



CSG({1, 2}) on subdivided stars in polynomial-time

In CSG({1, 2}), we can reduce the paths of a subdivided stars to
their length modulo 3.

Lemma (BCDGMPS18)

Number of paths of length 2

N
um

be
ro

fp
at

hs

∅

0
1
2
3
4
5
...

2p
2p + 1

0 1 2 3 4 5 . . . 2p 2p + 1
0
1
2 0
0 1 2
1 2 0 1
0 3 1 2 0
1 2 0 3 1 2

0 3 1 2 0 3 (03)∗ 0
1 2 0 3 1 2 (12)∗ 1 2

There is a polynomial-time algorithm computing the Grundy
value of a subdivided star in CSG({1, 2}).

Theorem (BCDGMPS18)

8/12



CSG({1, 2}) on subdivided stars in polynomial-time

In CSG({1, 2}), we can reduce the paths of a subdivided stars to
their length modulo 3.

Lemma (BCDGMPS18)

Number of paths of length 2

N
um

be
ro

fp
at

hs

∅

0
1
2
3
4
5
...

2p
2p + 1

0 1 2 3 4 5 . . . 2p 2p + 1
0
1
2 0
0 1 2
1 2 0 1
0 3 1 2 0
1 2 0 3 1 2

0 3 1 2 0 3 (03)∗ 0
1 2 0 3 1 2 (12)∗ 1 2

There is a polynomial-time algorithm computing the Grundy
value of a subdivided star in CSG({1, 2}).

Theorem (BCDGMPS18)

8/12



CSG({1, 2}) on subdivided stars in polynomial-time

In CSG({1, 2}), we can reduce the paths of a subdivided stars to
their length modulo 3.

Lemma (BCDGMPS18)

Number of paths of length 2

N
um

be
ro

fp
at

hs

∅

0
1
2
3
4
5
...

2p
2p + 1

0 1 2 3 4 5 . . . 2p 2p + 1
0
1
2 0
0 1 2
1 2 0 1
0 3 1 2 0
1 2 0 3 1 2

0 3 1 2 0 3 (03)∗ 0
1 2 0 3 1 2 (12)∗ 1 2

There is a polynomial-time algorithm computing the Grundy
value of a subdivided star in CSG({1, 2}).

Theorem (BCDGMPS18)

8/12



CSG({1, 2}) on subdivided stars in polynomial-time

In CSG({1, 2}), we can reduce the paths of a subdivided stars to
their length modulo 3.

Lemma (BCDGMPS18)

Number of paths of length 2

N
um

be
ro

fp
at

hs

∅

0
1
2
3
4
5
...

2p
2p + 1

0 1 2 3 4 5 . . . 2p 2p + 1
0
1
2 0
0 1 2
1 2 0 1
0 3 1 2 0
1 2 0 3 1 2

0 3 1 2 0 3 (03)∗ 0
1 2 0 3 1 2 (12)∗ 1 2

There is a polynomial-time algorithm computing the Grundy
value of a subdivided star in CSG({1, 2}).

Theorem (BCDGMPS18)

8/12



CSG({1, 2}) on subdivided stars in polynomial-time

In CSG({1, 2}), we can reduce the paths of a subdivided stars to
their length modulo 3.

Lemma (BCDGMPS18)

Number of paths of length 2

N
um

be
ro

fp
at

hs

∅

0
1
2
3
4
5
...

2p
2p + 1

0 1 2 3 4 5 . . . 2p 2p + 1
0
1
2 0
0 1 2
1 2 0 1
0 3 1 2 0
1 2 0 3 1 2

0 3 1 2 0 3 (03)∗ 0
1 2 0 3 1 2 (12)∗ 1 2

There is a polynomial-time algorithm computing the Grundy
value of a subdivided star in CSG({1, 2}).

Theorem (BCDGMPS18)

8/12



CSG({1, 2}) on subdivided stars in polynomial-time

In CSG({1, 2}), we can reduce the paths of a subdivided stars to
their length modulo 3.

Lemma (BCDGMPS18)

Number of paths of length 2

N
um

be
ro

fp
at

hs

∅

0
1
2
3
4
5
...

2p
2p + 1

0 1 2 3 4 5 . . . 2p 2p + 1
0
1
2 0
0 1 2
1 2 0 1
0 3 1 2 0
1 2 0 3 1 2

0 3 1 2 0 3 (03)∗ 0
1 2 0 3 1 2 (12)∗ 1 2

There is a polynomial-time algorithm computing the Grundy
value of a subdivided star in CSG({1, 2}).

Theorem (BCDGMPS18)

8/12



CSG({1, 2}) on subdivided bistars
Paths reduction in bistars
Periodicity ⇒ reduction of stars’ paths.

Reduction of the central path.

There is a polynomial-time algorithm computing the Grundy
value of a subdivided bistar in CSG({1, 2}), using two refine-
ments of the nim-sum.

Theorem [BCDGMPS, 2018]

Reduction of paths for CSG({1, 2})

Paths

Subdivided stars Subdivided bistars Trees

?

9/12



CSG({1, 2}) on subdivided bistars
Paths reduction in bistars
Periodicity ⇒ reduction of stars’ paths.

Reduction of the central path.

There is a polynomial-time algorithm computing the Grundy
value of a subdivided bistar in CSG({1, 2}), using two refine-
ments of the nim-sum.

Theorem [BCDGMPS, 2018]

Reduction of paths for CSG({1, 2})

Paths

Subdivided stars Subdivided bistars Trees

?

9/12



CSG({1, 2}) on subdivided bistars
Paths reduction in bistars
Periodicity ⇒ reduction of stars’ paths.

Reduction of the central path.

There is a polynomial-time algorithm computing the Grundy
value of a subdivided bistar in CSG({1, 2}), using two refine-
ments of the nim-sum.

Theorem [BCDGMPS, 2018]

Reduction of paths for CSG({1, 2})

Paths

Subdivided stars Subdivided bistars Trees

?

9/12



CSG({1, 2}) on subdivided bistars
Paths reduction in bistars
Periodicity ⇒ reduction of stars’ paths.
Reduction of the central path.

There is a polynomial-time algorithm computing the Grundy
value of a subdivided bistar in CSG({1, 2}), using two refine-
ments of the nim-sum.

Theorem [BCDGMPS, 2018]

Reduction of paths for CSG({1, 2})

Paths

Subdivided stars Subdivided bistars Trees

?

9/12



CSG({1, 2}) on subdivided bistars
Paths reduction in bistars
Periodicity ⇒ reduction of stars’ paths.
Reduction of the central path.

There is a polynomial-time algorithm computing the Grundy
value of a subdivided bistar in CSG({1, 2}), using two refine-
ments of the nim-sum.

Theorem [BCDGMPS, 2018]

Reduction of paths for CSG({1, 2})

Paths

Subdivided stars Subdivided bistars Trees

?

9/12



CSG({1, 2}) on subdivided bistars
Paths reduction in bistars
Periodicity ⇒ reduction of stars’ paths.
Reduction of the central path.

There is a polynomial-time algorithm computing the Grundy
value of a subdivided bistar in CSG({1, 2}), using two refine-
ments of the nim-sum.

Theorem [BCDGMPS, 2018]

Reduction of paths for CSG({1, 2})

Paths

Subdivided stars Subdivided bistars Trees

?

9/12



CSG({1, 2}) on subdivided bistars
Paths reduction in bistars
Periodicity ⇒ reduction of stars’ paths.
Reduction of the central path.

There is a polynomial-time algorithm computing the Grundy
value of a subdivided bistar in CSG({1, 2}), using two refine-
ments of the nim-sum.

Theorem [BCDGMPS, 2018]

Reduction of paths for CSG({1, 2})

Paths

Subdivided stars Subdivided bistars Trees

?

9/12



CSG({1, 2}) on subdivided bistars
Paths reduction in bistars
Periodicity ⇒ reduction of stars’ paths.
Reduction of the central path.

There is a polynomial-time algorithm computing the Grundy
value of a subdivided bistar in CSG({1, 2}), using two refine-
ments of the nim-sum.

Theorem [BCDGMPS, 2018]

Reduction of paths for CSG({1, 2})

Paths

Subdivided stars Subdivided bistars Trees

?

9/12



CSG({1, 2}) on subdivided bistars
Paths reduction in bistars
Periodicity ⇒ reduction of stars’ paths.
Reduction of the central path.

There is a polynomial-time algorithm computing the Grundy
value of a subdivided bistar in CSG({1, 2}), using two refine-
ments of the nim-sum.

Theorem [BCDGMPS, 2018]

Reduction of paths for CSG({1, 2})

Paths
Subdivided stars

Subdivided bistars Trees

?

9/12



CSG({1, 2}) on subdivided bistars
Paths reduction in bistars
Periodicity ⇒ reduction of stars’ paths.
Reduction of the central path.

There is a polynomial-time algorithm computing the Grundy
value of a subdivided bistar in CSG({1, 2}), using two refine-
ments of the nim-sum.

Theorem [BCDGMPS, 2018]

Reduction of paths for CSG({1, 2})

Paths
Subdivided stars Subdivided bistars

Trees

?

9/12



CSG({1, 2}) on subdivided bistars
Paths reduction in bistars
Periodicity ⇒ reduction of stars’ paths.
Reduction of the central path.

There is a polynomial-time algorithm computing the Grundy
value of a subdivided bistar in CSG({1, 2}), using two refine-
ments of the nim-sum.

Theorem [BCDGMPS, 2018]

Reduction of paths for CSG({1, 2})

Paths
Subdivided stars Subdivided bistars Trees

?

9/12



CSG({1, 2}) on trees?

Proposition
The reduction of paths does not work in trees:

u u
̸≡

Unbounded values?
The following caterpillar has Grundy value 10:
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A few other games
CSG({2})
Arc-Kayles without disconnecting the graph.

▶ On trees and 2 × n grids: every possible move will be played,
so no strategy...

▶ On 3 × n grids: always possible to empty the grid!
▶ Newsflash: PSPACE-complete on bipartite graphs, split

graphs and graphs of any given girth!

Adjoining integers
We can adjoin M to S if G(G) is the same for CSG(S) and
CSG(S ∪ {M})

Let G be a subdivided star. Then, G(G) is the same for
CSG({1, 2}) and CSG({1, 2, 4}).

Theorem [D. Moncel, Parreau, 2019]

However, this is not always possible, even on subdivided stars!
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Final words
Some interesting open problems

1. Complexity of CSG(S) when 1 ∈ S
2. Regularity of CSG(N \ S)
3. Adjoining integers to S: when is it possible?
4. CSG({1, . . . , N}) for N ≥ 4 on subdivided stars: can we still

reduce paths?
5. CSG({1, 2}) on trees: which regularity?
6. CSG({1, 2}) on trees: are Grundy values bounded?
7. CSG({2}) on larger grids: will they still be emptied?
8. CSG({N}) for N ≥ 3 on trees: is there some strategy?

12/12



Final words
Some interesting open problems

1. Complexity of CSG(S) when 1 ∈ S
2. Regularity of CSG(N \ S)
3. Adjoining integers to S: when is it possible?

4. CSG({1, . . . , N}) for N ≥ 4 on subdivided stars: can we still
reduce paths?

5. CSG({1, 2}) on trees: which regularity?
6. CSG({1, 2}) on trees: are Grundy values bounded?
7. CSG({2}) on larger grids: will they still be emptied?
8. CSG({N}) for N ≥ 3 on trees: is there some strategy?

12/12



Final words
Some interesting open problems

1. Complexity of CSG(S) when 1 ∈ S
2. Regularity of CSG(N \ S)
3. Adjoining integers to S: when is it possible?
4. CSG({1, . . . , N}) for N ≥ 4 on subdivided stars: can we still

reduce paths?
5. CSG({1, 2}) on trees: which regularity?
6. CSG({1, 2}) on trees: are Grundy values bounded?

7. CSG({2}) on larger grids: will they still be emptied?
8. CSG({N}) for N ≥ 3 on trees: is there some strategy?

12/12



Final words
Some interesting open problems

1. Complexity of CSG(S) when 1 ∈ S
2. Regularity of CSG(N \ S)
3. Adjoining integers to S: when is it possible?
4. CSG({1, . . . , N}) for N ≥ 4 on subdivided stars: can we still

reduce paths?
5. CSG({1, 2}) on trees: which regularity?
6. CSG({1, 2}) on trees: are Grundy values bounded?
7. CSG({2}) on larger grids: will they still be emptied?
8. CSG({N}) for N ≥ 3 on trees: is there some strategy?

12/12



Final words
Some interesting open problems

1. Complexity of CSG(S) when 1 ∈ S
2. Regularity of CSG(N \ S)
3. Adjoining integers to S: when is it possible?
4. CSG({1, . . . , N}) for N ≥ 4 on subdivided stars: can we still

reduce paths?
5. CSG({1, 2}) on trees: which regularity?
6. CSG({1, 2}) on trees: are Grundy values bounded?
7. CSG({2}) on larger grids: will they still be emptied?
8. CSG({N}) for N ≥ 3 on trees: is there some strategy?

12/12


	The end!

