Algorithms for the Metric Dimension problem on directed graphs

Antoine Dailly, Florent Foucaud, Anni Hakanen LIMOS, Clermont-Ferrand

> Séminaire Algo du GREYC February 28, 2023

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites for position

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites for position

Question

How can we transpose this approach to graphs?

Definition

Definition

Definition

Definition

Definition

Definition

Definition

MD(G) = minimum size of a resolving set of G

1.
$$MD(G) = 1 \Leftrightarrow G$$
 is a path

1.
$$MD(G) = 1 \Leftrightarrow G$$
 is a path

2.
$$MD(G) = n - 1 \Leftrightarrow G$$
 is K_n

1.
$$MD(G) = 1 \Leftrightarrow G$$
 is a path

- 2. $MD(G) = n 1 \Leftrightarrow G$ is K_n
- 3. Trees?

1.
$$MD(G) = 1 \Leftrightarrow G$$
 is a path

2.
$$MD(G) = n-1 \Leftrightarrow G$$
 is K_n

1.
$$MD(G) = 1 \Leftrightarrow G$$
 is a path

2.
$$MD(G) = n - 1 \Leftrightarrow G$$
 is K_n

Legs Paths with degree 2 inner vertices, and degree 1 and \ge 3 endpoints. If v has k legs, k-1 have \ge 1 vertex in a resolving set.

1.
$$MD(G) = 1 \Leftrightarrow G$$
 is a path

2.
$$MD(G) = n - 1 \Leftrightarrow G$$
 is K_n

3. Trees?

Legs Paths with degree 2 inner vertices, and degree 1 and \geq 3 endpoints. If v has k legs, k-1 have \geq 1 vertex in a resolving set.

Simple leg rule: If v has $k \ge 2$ legs, select k-1 leg endpoints.

1. $MD(G) = 1 \Leftrightarrow G$ is a path

- 2. $MD(G) = n-1 \Leftrightarrow G$ is K_n
- 3. Trees? The simple leg rule gives an optimal resolving set [Slater, 1975]

Legs

Paths with degree 2 inner vertices, and degree 1 and \ge 3 endpoints. If v has k legs, k-1 have \ge 1 vertex in a resolving set.

Simple leg rule: If v has $k \ge 2$ legs, select k-1 leg endpoints.

Metric Dimension is difficult!

▶ NP-complete... [Garey & Johnson, 1979]

Metric Dimension is difficult!

- ▶ NP-complete... [Garey & Johnson, 1979]
- ... even on very simple graph classes: planar [Díaz et al., 2012], split, bipartite [Epstein et al., 2012], interval of diameter 2 [Foucaud et al., 2017], bounded treewidth [Li & Pilipczuk, 2022]

Metric Dimension is difficult!

- ▶ NP-complete... [Garey & Johnson, 1979]
- ... even on very simple graph classes: planar [Díaz et al., 2012], split, bipartite [Epstein et al., 2012], interval of diameter 2 [Foucaud et al., 2017], bounded treewidth [Li & Pilipczuk, 2022]
- W[2]-complete (so no f(MD)n^k algorithm), even on subcubic graphs [Hartung & Nichterlein, 2013]

Metric Dimension is difficult!

- ▶ NP-complete... [Garey & Johnson, 1979]
- ... even on very simple graph classes: planar [Díaz et al., 2012], split, bipartite [Epstein et al., 2012], interval of diameter 2 [Foucaud et al., 2017], bounded treewidth [Li & Pilipczuk, 2022]
- W[2]-complete (so no f(MD)n^k algorithm), even on subcubic graphs [Hartung & Nichterlein, 2013]
- ► No polynomial-time algorithm can give better than a log(n) approximation factor, even on subcubic graphs [HN13]

Metric Dimension is difficult!

- ▶ NP-complete... [Garey & Johnson, 1979]
- ... even on very simple graph classes: planar [Díaz et al., 2012], split, bipartite [Epstein et al., 2012], interval of diameter 2 [Foucaud et al., 2017], bounded treewidth [Li & Pilipczuk, 2022]
- W[2]-complete (so no f(MD)n^k algorithm), even on subcubic graphs [Hartung & Nichterlein, 2013]
- ► No polynomial-time algorithm can give better than a log(n) approximation factor, even on subcubic graphs [HN13]

A few positive results...

- Linear-time: cographs [Epstein *et al.*, 2012], cactus block graphs [Hoffmann *et al.*, 2016]
- ▶ Polynomial-time: outerplanar graphs [Díaz et al., 2012]
- ► FPT for bounded treelength [Belmonte *et al.*, 2015]

Inclusion diagram

Inclusion diagram

Inclusion diagram

► A directed graph may contain 2-cycles

 A directed graph may contain 2-cycles, an oriented graph cannot.

- A directed graph may contain 2-cycles, an oriented graph cannot.
- If we remove the orientation, we obtain the underlying undirected graph

- A directed graph may contain 2-cycles, an oriented graph cannot.
- If we remove the orientation, we obtain the underlying undirected graph

The definitions for Metric Dimension do not change:

- *b* resolves *u* and *v* if dist $(b, u) \neq$ dist(b, v)
- R ⊆ V(G) is a resolving set of G iff for every pair {u, v}, there is b ∈ R that resolves u and v
- $MD(\vec{G}) = minimum$ size of a resolving set of \vec{G}

- A directed graph may contain 2-cycles, an oriented graph cannot.
- If we remove the orientation, we obtain the underlying undirected graph

The definitions for Metric Dimension do not change:

- *b* resolves *u* and *v* if dist $(b, u) \neq$ dist(b, v)
- R ⊆ V(G) is a resolving set of G iff for every pair {u, v}, there is b ∈ R that resolves u and v
- $MD(\vec{G}) = minimum$ size of a resolving set of \vec{G}

But there will be reachability problems!

Previous work

Introduced in [Chartrand et al., 2000] in a more constrained way: every vertex has to be reachable from the whole resolving set
- Introduced in [Chartrand et al., 2000] in a more constrained way: every vertex has to be reachable from the whole resolving set
- Study of MD(G) for "nice" oriented classes: Cayley digraphs [Fehr, 2006], tournaments [Lozano, 2013], orientations of wheels & fans [Pancahayani & Simanjuntak, 2014], De Brujin and Kautz digraphs [Rajan *et al.*, 2015]

- Introduced in [Chartrand et al., 2000] in a more constrained way: every vertex has to be reachable from the whole resolving set
- ► Study of MD(G) for "nice" oriented classes: Cayley digraphs [Fehr, 2006], tournaments [Lozano, 2013], orientations of wheels & fans [Pancahayani & Simanjuntak, 2014], De Brujin and Kautz digraphs [Rajan *et al.*, 2015]
- Relaxed definition we use introduced in [Araujo *et al.*, 2023+]: every vertex must be reachable from some vertex in the resolving set

- Introduced in [Chartrand et al., 2000] in a more constrained way: every vertex has to be reachable from the whole resolving set
- ► Study of MD(G) for "nice" oriented classes: Cayley digraphs [Fehr, 2006], tournaments [Lozano, 2013], orientations of wheels & fans [Pancahayani & Simanjuntak, 2014], De Brujin and Kautz digraphs [Rajan *et al.*, 2015]
- Relaxed definition we use introduced in [Araujo *et al.*, 2023+]: every vertex must be reachable from some vertex in the resolving set
- NP-complete on bipartite DAGs with maximum degree 8 and maximum distance 4 [Araujo *et al.*, 2023+]

- Introduced in [Chartrand et al., 2000] in a more constrained way: every vertex has to be reachable from the whole resolving set
- ► Study of MD(G) for "nice" oriented classes: Cayley digraphs [Fehr, 2006], tournaments [Lozano, 2013], orientations of wheels & fans [Pancahayani & Simanjuntak, 2014], De Brujin and Kautz digraphs [Rajan *et al.*, 2015]
- Relaxed definition we use introduced in [Araujo *et al.*, 2023+]: every vertex must be reachable from some vertex in the resolving set
- NP-complete on bipartite DAGs with maximum degree 8 and maximum distance 4 [Araujo *et al.*, 2023+]
- Linear-time algorithm for orientations of trees [Araujo *et al.*, 2023+]

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Proof

1. Every vertex must be reachable from at least one vertex in R

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Proof

 Every vertex must be reachable from at least one vertex in R ⇒ Every source is in R

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Proof

- Every vertex must be reachable from at least one vertex in R ⇒ Every source is in R
- 2. Resolving pairs of vertices

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Proof

- Every vertex must be reachable from at least one vertex in R ⇒ Every source is in R
- Resolving pairs of vertices ⇒ For every set of k in-twins,

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Proof

- Every vertex must be reachable from at least one vertex in R ⇒ Every source is in R
- Resolving pairs of vertices ⇒ For every set of k in-twins, k-1 of them are in R

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Proof

- Every vertex must be reachable from at least one vertex in R ⇒ Every source is in R
- Resolving pairs of vertices ⇒ For every set of k in-twins, k-1 of them are in R

Holds for all directed graphs!

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Proof

- Every vertex must be reachable from at least one vertex in R ⇒ Every source is in R
- Resolving pairs of vertices ⇒ For every set of k in-twins, k-1 of them are in R

Holds for all directed graphs!

3 The set R constructed this way is a resolving set

Our results

Theorem [D., Foucaud & Hakanen, 2023+]

Linear-time algorithms for minimum-size resolving sets of directed trees and orientations of unicyclic graphs.

Our results

Theorem [D., Foucaud & Hakanen, 2023+]

Linear-time algorithms for minimum-size resolving sets of directed trees and orientations of unicyclic graphs.

Theorem [D., Foucaud & Hakanen, 2023+]

NP-complete for planar triangle-free DAGs of maximum degree 6.

Our results

Theorem [D., Foucaud & Hakanen, 2023+]

Linear-time algorithms for minimum-size resolving sets of directed trees and orientations of unicyclic graphs.

Theorem [D., Foucaud & Hakanen, 2023+]

NP-complete for planar triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023+]

FPT algorithm parameterized by directed modular width.

Directed trees (1) Necessary vertices

Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree. Directed trees (1) Necessary vertices

Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Algorithm: two mandatory things

Sources + resolving sets of in-twins

Directed trees (1) Necessary vertices

Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Algorithm: two mandatory things

- Sources + resolving sets of in-twins
- Resolving legs of strongly connected components

Every dummy vertex is a representative of the vertices in the resolving set behind the in-arc

Every dummy vertex is a representative of the vertices in the resolving set behind the in-arc They act like degree ≥ 3 vertices for the purpose of legs

Definition

An escalator is a strongly connected component with:

a path as an underlying graph

Definition

An escalator is a strongly connected component with:

- a path as an underlying graph
- only one in-arc from outside, at one end

Definition

An escalator is a strongly connected component with:

- a path as an underlying graph
- only one in-arc from outside, at one end
- ▶ the only possible out-arcs to outside are at the other end

Definition

An escalator is a strongly connected component with:

- a path as an underlying graph
- only one in-arc from outside, at one end
- the only possible out-arcs to outside are at the other end

→ These are almost-in-twins

Definition

An escalator is a strongly connected component with:

- a path as an underlying graph
- only one in-arc from outside, at one end
- the only possible out-arcs to outside are at the other end

→ These are almost-in-twins

► For each set of k almost-in-twins, take k-1 in the resolving set

Definition

In a strongly connected component, a special leg is a leg that:
▶ spans from a dummy or degree ≥ 3 (in the component) vertex

Definition

In a strongly connected component, a special leg is a leg that:

- Spans from a dummy or degree ≥ 3 (in the component) vertex
- has at least one out-arc from a vertex other than its endpoint

Definition

In a strongly connected component, a special leg is a leg that:

- Spans from a dummy or degree ≥ 3 (in the component) vertex
- has at least one out-arc from a vertex other than its endpoint

 \rightarrow Conflict between pairs!

Definition

In a strongly connected component, a special leg is a leg that:

- Spans from a dummy or degree ≥ 3 (in the component) vertex
- has at least one out-arc from a vertex other than its endpoint

→ Conflict between pairs!

► Take the endpoint of each special leg

Directed trees (5) Third problem: some paths...

The strongly connected components whose underlying graph is a path (snake = any positive length) with the following patterns:

Directed trees (5) Third problem: some paths...

The strongly connected components whose underlying graph is a path (snake = any positive length) with the following patterns:

... require one or two endpoints.

Directed trees (6) The final algorithm

Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree. Directed trees (6) The final algorithm

Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

- 1. Take every source, resolve each set of almost-in-twins
- 2. For each strongly connected component

Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

- 1. Take every source, resolve each set of almost-in-twins
- 2. For each strongly connected component
 - 2.1 Mark the dummy vertices

Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

- 1. Take every source, resolve each set of almost-in-twins
- 2. For each strongly connected component
 - 2.1 Mark the dummy vertices
 - 2.2 Solve the special paths cases (previous slide)

Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

- 1. Take every source, resolve each set of almost-in-twins
- 2. For each strongly connected component
 - 2.1 Mark the dummy vertices
 - 2.2 Solve the special paths cases (previous slide)
 - 2.3 Take the endpoint of every special leg

Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

- 1. Take every source, resolve each set of almost-in-twins
- 2. For each strongly connected component
 - 2.1 Mark the dummy vertices
 - 2.2 Solve the special paths cases (previous slide)
 - 2.3 Take the endpoint of every special leg
 - 2.4 Resolve the remaining standard legs

Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Algorithm

- 1. Take every source, resolve each set of almost-in-twins
- 2. For each strongly connected component
 - 2.1 Mark the dummy vertices
 - 2.2 Solve the special paths cases (previous slide)
 - 2.3 Take the endpoint of every special leg
 - 2.4 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of the orientation of a unicyclic graph.

Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of the orientation of a unicyclic graph.

- 1. Take every source
- 3. Resolve each set of in-twins

Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of the orientation of a unicyclic graph.

- 1. Take every source
- 3. Resolve each set of in-twins with some priority

Theorem [D., Foucaud & Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of the orientation of a unicyclic graph.

- 1. Take every source
- 2. Manage a few special cases (at most one more vertex)
- 3. Resolve each set of in-twins with some priority

Which in-twin?

Which in-twin?

Priority

Give priority to in-twins in the cycle

▲ Special case (Reachability)

Which in-twin?

Priority

Give priority to in-twins in the cycle

▲**Special case** (Reachability) ⇒ Take one vertex from the cycle

Which in-twin?

Priority

Give priority to in-twins in the cycle

Which in-twin?

 $\underline{\land} Special case (Reachability)$ $<math>\Rightarrow$ Take one vertex from the cycle

Priority

Give priority to in-twins in the cycle

▲ Special case (Unresolved pair)

Which in-twin?

 $\underline{\land} Special case (Reachability)$ $<math>\Rightarrow$ Take one vertex from the cycle

Priority

Give priority to in-twins in the cycle

▲Special case (Unresolved pair)
⇒ Take one unresolved vertex

▲ **Special case** (Unresolved pair)

 $\underline{\land} Special case$ (Unresolved pair) $<math>\Rightarrow$ Take one unresolved vertex

▲Special case (Unresolved pair)

▲Special case (Unresolved pair) ⇒ Take one unresolved vertex

▲Special case (Unresolved pair) ⇒ Take one unresolved vertex

▲Special case (Unresolved pair)

 $\underline{\land} Special case$ (Unresolved pair) $<math>\Rightarrow Take one$ unresolved vertex

▲ Special case (Unresolved pair)
⇒ Take the sink of the cycle

▲ Special case (Unresolved pair)

Those are **concerning paths**,

Those are **concerning paths**, which can be either **unfixable**

Those are **concerning paths**, which can be either unfixable or fixable.

Those are **concerning paths**, which can be either unfixable or fixable.

Special case & Priority

▶ If all the concerning paths are unfixable, then, take the sink

Those are **concerning paths**, which can be either unfixable or fixable.

Special case & Priority

- ▶ If all the concerning paths are unfixable, then, take the sink
- Otherwise,

Those are **concerning paths**, which can be either unfixable or fixable.

Special case & Priority

- If all the concerning paths are unfixable, then, take the sink
- Otherwise, **priority** to in-twins in unfixable paths

Those are **concerning paths**, which can be either unfixable or fixable.

Special case & Priority

- If all the concerning paths are unfixable, then, take the sink
- Otherwise, priority to in-twins in unfixable paths, then concerning paths

More than two sinks in the cycle

More than two sinks in the cycle

 \rightarrow No problem!
More than two sinks in the cycle

 \rightarrow No problem!

Linear-time algorithm

- 1. Take every source
- 2. Manage the special cases
- 3. Resolve each set of in-twins with some priority

Theorem [D., Foucaud & Hakanen, 2023+]

DIRECTED METRIC DIMENSION is NP-complete for planar triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023+]

DIRECTED METRIC DIMENSION is NP-complete for planar triangle-free DAGs of maximum degree 6.

Proof

Reduction from VERTEX COVER on planar cubic biconnected undirected graphs [Mohar, 2001]

Theorem [D., Foucaud & Hakanen, 2023+]

DIRECTED METRIC DIMENSION is NP-complete for planar triangle-free DAGs of maximum degree 6.

Proof

Reduction from VERTEX COVER on planar cubic biconnected undirected graphs [Mohar, 2001] In particular, such graphs have a perfect matching [Petersen, 1891].

Theorem [D., Foucaud & Hakanen, 2023+]

DIRECTED METRIC DIMENSION is NP-complete for planar triangle-free DAGs of maximum degree 6.

Proof

Reduction from VERTEX COVER on planar cubic biconnected undirected graphs [Mohar, 2001]

In particular, such graphs have a perfect matching [Petersen, 1891].

If $uv \in$ perfect matching

Theorem [D., Foucaud & Hakanen, 2023+]

DIRECTED METRIC DIMENSION is NP-complete for planar triangle-free DAGs of maximum degree 6.

Proof

Reduction from VERTEX COVER on planar cubic biconnected undirected graphs [Mohar, 2001]

In particular, such graphs have a perfect matching [Petersen, 1891].

If $uv \in$ perfect matching

Theorem [D., Foucaud & Hakanen, 2023+]

DIRECTED METRIC DIMENSION is NP-complete for planar triangle-free DAGs of maximum degree 6.

Proof

Reduction from VERTEX COVER on planar cubic biconnected undirected graphs [Mohar, 2001]

In particular, such graphs have a perfect matching [Petersen, 1891].

If $uv \in$ perfect matching

If *uv* ∉ perfect matching

Theorem [D., Foucaud & Hakanen, 2023+]

DIRECTED METRIC DIMENSION is NP-complete for planar triangle-free DAGs of maximum degree 6.

Proof

Reduction from VERTEX COVER on planar cubic biconnected undirected graphs [Mohar, 2001]

In particular, such graphs have a perfect matching [Petersen, 1891].

If $uv \not\in perfect matching$

Theorem [D., Foucaud & Hakanen, 2023+]

DIRECTED METRIC DIMENSION is NP-complete for planar triangle-free DAGs of maximum degree 6.

Proof

Reduction from VERTEX COVER on planar cubic biconnected undirected graphs [Mohar, 2001]

In particular, such graphs have a perfect matching [Petersen, 1891].

If *uv* ∉ perfect matching

Theorem [D., Foucaud & Hakanen, 2023+]

DIRECTED METRIC DIMENSION is NP-complete for planar triangle-free DAGs of maximum degree 6.

Proof

Reduction from VERTEX COVER on planar cubic biconnected undirected graphs [Mohar, 2001]

In particular, such graphs have a perfect matching [Petersen, 1891].

If $uv \in$ perfect matching

If *uv* ∉ perfect matching

We start from a planar cubic graph

We start from a planar cubic graph and a perfect matching

We start from a planar cubic graph and a perfect matching

We start from a planar cubic graph and a perfect matching

Vertex cover
$$\leq k \Leftrightarrow MD \leq k + \frac{4|E|}{3}$$

Vertex cover
$$\leq k \Rightarrow MD \leq k + \frac{4|E|}{3}$$

Vertex cover
$$\leq k \Rightarrow MD \leq k + \frac{4|E|}{3}$$

Vertex cover
$$\leq k \Rightarrow MD \leq k + \frac{4|E|}{3}$$

Vertex cover
$$\leq k \leftarrow MD \leq k + \frac{4|E|}{3}$$

Vertex cover
$$\leq k \leftarrow MD \leq k + \frac{4|E|}{3}$$

Vertex cover
$$\leq k \leftarrow MD \leq k + \frac{4|E|}{3}$$

Vertex cover
$$\leq k \leftarrow MD \leq k + \frac{4|E|}{3}$$

Vertex cover
$$\leq k \leftarrow MD \leq k + \frac{4|E|}{3}$$

Vertex cover
$$\leq k \leftarrow MD \leq k + \frac{4|E|}{3}$$

Vertex cover
$$\leq k \leftarrow MD \leq k + \frac{4|E|}{3}$$

Vertex cover
$$\leq k \leftarrow MD \leq k + \frac{4|E|}{3}$$

Vertex cover
$$\leq k \leftarrow MD \leq k + \frac{4|E|}{3}$$

Vertex cover
$$\leq k \Leftrightarrow MD \leq k + \frac{4|E|}{3}$$

Theorem [D., Foucaud & Hakanen, 2023+]

There is an $\mathcal{O}(n^3+m) + \mathcal{O}(t^52^{t^2}n)$ algorithm computing the metric dimension of a digraph of order *n*, size *m* and directed modular width at most *t*.

Theorem [D., Foucaud & Hakanen, 2023+]

There is an $\mathcal{O}(n^3+m)+\mathcal{O}(t^52^{t^2}n)$ algorithm computing the metric dimension of a digraph of order *n*, size *m* and directed modular width at most *t*.

Algorithm Generalized from [Belmonte *et al.*, 2017]

Theorem [D., Foucaud & Hakanen, 2023+]

There is an $\mathcal{O}(n^3+m)+\mathcal{O}(t^52^{t^2}n)$ algorithm computing the metric dimension of a digraph of order *n*, size *m* and directed modular width at most *t*.

Algorithm

Generalized from [Belmonte et al., 2017]

- 1. Compute all the distances [Floyd-Warshall]
- 2. Obtain an optimal modular decomposition [McConnell & de Montgolfier, 2005]

Theorem [D., Foucaud & Hakanen, 2023+]

There is an $\mathcal{O}(n^3+m)+\mathcal{O}(t^52^{t^2}n)$ algorithm computing the metric dimension of a digraph of order *n*, size *m* and directed modular width at most *t*.

Algorithm

Generalized from [Belmonte et al., 2017]

- 1. Compute all the distances [Floyd-Warshall]
- 2. Obtain an optimal modular decomposition [McConnell & de Montgolfier, 2005]
- 3. Start from the trivial modules, and combine them (dynamic programming)

Definition [Gallai, 1967] (and many others) A module is a set X of vertices such that every vertex **outside** of X sees vertices of X in the same way. A factorization is the graph of the modules. A modular decomposition is obtained by repeating factorizations. The width of a decomposition is the **max** number of modules in one factorization step.

Definition [Gallai, 1967] (and many others) A module is a set X of vertices such that every vertex **outside** of X sees vertices of X in the same way. A factorization is the graph of the modules. A modular decomposition is obtained by repeating factorizations. The width of a decomposition is the **max** number of modules in one factorization step.

width 3

Definition [Gallai, 1967] (and many others)

- A module is a set X of vertices such that every vertex **outside** of X sees vertices of X in the same way.
- A factorization is the graph of the modules.
- A modular decomposition is obtained by repeating factorizations. The width of a decomposition is the **max** number of modules in one factorization step.
- The modular width is the min width over all decompositions.

width 3

Definition [Gallai, 1967] (and many others)

- A module is a set X of vertices such that every vertex **outside** of X sees vertices of X in the same way.
- A factorization is the graph of the modules.
- A modular decomposition is obtained by repeating factorizations. The width of a decomposition is the **max** number of modules in one factorization step.
- The modular width is the min width over all decompositions.

mw 3

width 3

1. Given vertices $x, y \in M_i$ and $z \in M_j$,

1. Given vertices $x, y \in M_i$ and $z \in M_j$, dist(x, z) = dist(y, z) and dist(z, x) = dist(z, y)

1. Given vertices $x, y \in M_i$ and $z \in M_j$, dist(x, z) = dist(y, z) and dist(z, x) = dist(z, y)

 \Rightarrow All nontrivial modules contain a vertex in the solution

1. Given vertices $x, y \in M_i$ and $z \in M_j$, dist(x, z) = dist(y, z) and dist(z, x) = dist(z, y)

 \Rightarrow All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the modular width

1. Given vertices $x, y \in M_i$ and $z \in M_j$, dist(x, z) = dist(y, z) and dist(z, x) = dist(z, y)

 \Rightarrow All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the modular width or infinite

1. Given vertices $x, y \in M_i$ and $z \in M_j$, dist(x, z) = dist(y, z) and dist(z, x) = dist(z, y)

 \Rightarrow All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the modular width or infinite

 \Rightarrow Allows us to bound DP steps by f(mw)

1. Given vertices $x, y \in M_i$ and $z \in M_j$, dist(x, z) = dist(y, z) and dist(z, x) = dist(z, y)

 \Rightarrow All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the modular width or infinite

 \Rightarrow Allows us to bound DP steps by f(mw)

3. Given vertices $x_1, x_2 \in M_i$,

1. Given vertices $x, y \in M_i$ and $z \in M_j$, dist(x, z) = dist(y, z) and dist(z, x) = dist(z, y)

 \Rightarrow All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the modular width or infinite

 \Rightarrow Allows us to bound DP steps by f(mw)

3. Given vertices $x_1, x_2 \in M_i$, if $dist(x_1, y) \neq dist(x_2, y)$,

1. Given vertices $x, y \in M_i$ and $z \in M_j$, dist(x, z) = dist(y, z) and dist(z, x) = dist(z, y)

 \Rightarrow All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the modular width or infinite

 \Rightarrow Allows us to bound DP steps by f(mw)

3. Given vertices $x_1, x_2 \in M_i$, if $dist(x_1, y) \neq dist(x_2, y)$, then $y \in M_i$

1. Given vertices $x, y \in M_i$ and $z \in M_j$, dist(x, z) = dist(y, z) and dist(z, x) = dist(z, y)

 \Rightarrow All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the modular width or infinite

 \Rightarrow Allows us to bound DP steps by f(mw)

3. Given vertices $x_1, x_2 \in M_i$, if dist $(x_1, y) \neq$ dist (x_2, y) , then $y \in M_i$ and one of x_1, x_2 will resolve y and $z \notin M_i$

1. Given vertices $x, y \in M_i$ and $z \in M_j$, dist(x, z) = dist(y, z) and dist(z, x) = dist(z, y)

 \Rightarrow All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the modular width or infinite

 \Rightarrow Allows us to bound DP steps by f(mw)

3. Given vertices $x_1, x_2 \in M_i$, if dist $(x_1, y) \neq$ dist (x_2, y) , then $y \in M_i$ and one of x_1, x_2 will resolve y and $z \notin M_i$

 \Rightarrow Combining local solutions is "easy" in this case

1. Given vertices $x, y \in M_i$ and $z \in M_j$, dist(x, z) = dist(y, z) and dist(z, x) = dist(z, y)

 \Rightarrow All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the modular width or infinite

 \Rightarrow Allows us to bound DP steps by f(mw)

3. Given vertices $x_1, x_2 \in M_i$, if dist $(x_1, y) \neq$ dist (x_2, y) , then $y \in M_i$ and one of x_1, x_2 will resolve y and $z \notin M_i$

 \Rightarrow Combining local solutions is "easy" in this case

But what if, for some $y \in M_i$,

1. Given vertices $x, y \in M_i$ and $z \in M_j$, dist(x, z) = dist(y, z) and dist(z, x) = dist(z, y)

 \Rightarrow All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the modular width or infinite

 \Rightarrow Allows us to bound DP steps by f(mw)

3. Given vertices $x_1, x_2 \in M_i$, if dist $(x_1, y) \neq$ dist (x_2, y) , then $y \in M_i$ and one of x_1, x_2 will resolve y and $z \notin M_i$

 \Rightarrow Combining local solutions is "easy" in this case

But what if, for some $y \in M_i$, dist $(x_1, y) = dist(x_2, y)$ for every $x_1, x_2 \in M_i$?

Definition

In a module M, a vertex x is d-constant if dist(w, x) = d for every $w \in M_R$ (where M_R is the local solution).

Definition

In a module M, a vertex x is d-constant if dist(w, x) = d for every $w \in M_R$ (where M_R is the local solution).

Definition

In a module M, a vertex x is d-constant if dist(w, x) = d for every $w \in M_R$ (where M_R is the local solution).

 $\underline{\wedge}$ The local solution M_R does not resolve x and y!

Definition

In a module M, a vertex x is d-constant if dist(w, x) = d for every $w \in M_R$ (where M_R is the local solution).

 $\underline{\wedge}$ The local solution M_R does not resolve x and y!

 \Rightarrow We need to keep track of all *d*-constant vertices...

Definition

In a module M, a vertex x is d-constant if dist(w, x) = d for every $w \in M_R$ (where M_R is the local solution).

 $\underline{\wedge}$ The local solution M_R does not resolve x and y!

 \Rightarrow We need to keep track of all *d*-constant vertices...

... but $d \in \{1, ..., mw, \infty\}$ so their number is **bounded by** mw+1 for each factor!

 \Rightarrow We can brute-force them when combining local solutions.

New inclusion diagram:

New inclusion diagram: (*) = our results

Final words

Our contribution to Metric Dimension on directed graphs

- NP-completeness for a very restricted class
- Linear-time algorithms (directed trees, orientations of unicyclic)
- ► FPT algorithm using modular decomposition

Final words

Our contribution to Metric Dimension on directed graphs

- NP-completeness for a very restricted class
- Linear-time algorithms (directed trees, orientations of unicyclic)
- ► FPT algorithm using modular decomposition

Future work

- 1. Orientations of/Directed outerplanar?
- 2. DAGs of maximum distance 2?
- 3. Other parameterizations? Practical implementation?

Final words

Our contribution to Metric Dimension on directed graphs

- NP-completeness for a very restricted class
- Linear-time algorithms (directed trees, orientations of unicyclic)
- ► FPT algorithm using modular decomposition

Future work

- 1. Orientations of/Directed outerplanar?
- 2. DAGs of maximum distance 2?
- 3. Other parameterizations? Practical implementation?

