Algorithms for the Metric Dimension problem on directed graphs

Antoine Dailly, Florent Foucaud, Anni Hakanen
LIMOS, Clermont-Ferrand

Séminaire Algo du GREYC
February 28, 2023

Where does it come from?

Where does it come from?

Where does it come from?

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites for position

Where does it come from?

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites for position

Question

How can we transpose this approach to graphs?

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Resolving Set [Slater, 1975] [Harary \& Melter, 1976]
$R \subseteq V(G)$ is a resolving set of G iff for every pair $\{u, v\}$, there is $b \in R$ that resolves u and v

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Resolving Set [Slater, 1975] [Harary \& Melter, 1976]
$R \subseteq V(G)$ is a resolving set of G iff for every pair $\{u, v\}$, there is $b \in R$ that resolves u and v

Metric Dimension

$\operatorname{MD}(G)=$ minimum size of a resolving set of G

Basic results

$$
\text { 1. } \operatorname{MD}(G)=1 \Leftrightarrow G \text { is a path } 0-0-0
$$

Basic results

1. $\operatorname{MD}(G)=1 \Leftrightarrow G$ is a path

2. $\mathrm{MD}(G)=n-1 \Leftrightarrow G$ is K_{n}

Basic results

1. $\operatorname{MD}(G)=1 \Leftrightarrow G$ is a path
2. $\mathrm{MD}(G)=n-1 \Leftrightarrow G$ is K_{n}

3. Trees?

Basic results

1. $\operatorname{MD}(G)=1 \Leftrightarrow G$ is a path

2. $\mathrm{MD}(G)=n-1 \Leftrightarrow G$ is K_{n}

3. Trees?

Legs

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 endpoints.

Basic results

1. $\operatorname{MD}(G)=1 \Leftrightarrow G$ is a path

2. $\mathrm{MD}(G)=n-1 \Leftrightarrow G$ is K_{n}

3. Trees?

Legs

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 endpoints. If v has k legs, $k-1$ have ≥ 1 vertex in a resolving set.

Basic results

1. $\operatorname{MD}(G)=1 \Leftrightarrow G$ is a path
2. $\mathrm{MD}(G)=n-1 \Leftrightarrow G$ is K_{n}

Legs

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 endpoints. If v has k legs, $k-1$ have ≥ 1 vertex in a resolving set.

Simple leg rule: If v has $k \geq 2$ legs, select $k-1$ leg endpoints.

Basic results

1. $\operatorname{MD}(G)=1 \Leftrightarrow G$ is a path

2. $\mathrm{MD}(G)=n-1 \Leftrightarrow G$ is K_{n}
3. Trees? The simple leg rule gives an optimal resolving set [Slater, 1975]

Legs

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 endpoints. If v has k legs, $k-1$ have ≥ 1 vertex in a resolving set.

Simple leg rule: If v has $k \geq 2$ legs, select $k-1$ leg endpoints.

Complexity results

Complexity results

Metric Dimension is difficult!

- NP-complete... [Garey \& Johnson, 1979]

Complexity results

Metric Dimension is difficult!

- NP-complete... [Garey \& Johnson, 1979]
- ... even on very simple graph classes: planar [Díaz et al., 2012], split, bipartite [Epstein et al., 2012], interval of diameter 2 [Foucaud et al., 2017], bounded treewidth [Li \& Pilipczuk, 2022]

Complexity results

Metric Dimension is difficult!

- NP-complete... [Garey \& Johnson, 1979]
- ... even on very simple graph classes: planar [Díaz et al., 2012], split, bipartite [Epstein et al., 2012], interval of diameter 2 [Foucaud et al., 2017], bounded treewidth [Li \& Pilipczuk, 2022]
- W[2]-complete (so no $f(\mathrm{MD}) n^{k}$ algorithm), even on subcubic graphs [Hartung \& Nichterlein, 2013]

Complexity results

Metric Dimension is difficult!

- NP-complete... [Garey \& Johnson, 1979]
- ... even on very simple graph classes: planar [Díaz et al., 2012], split, bipartite [Epstein et al., 2012], interval of diameter 2 [Foucaud et al., 2017], bounded treewidth [Li \& Pilipczuk, 2022]
- W[2]-complete (so no $f(\mathrm{MD}) n^{k}$ algorithm), even on subcubic graphs [Hartung \& Nichterlein, 2013]
- No polynomial-time algorithm can give better than a $\log (n)$ approximation factor, even on subcubic graphs [HN13]

Complexity results

Metric Dimension is difficult!

- NP-complete... [Garey \& Johnson, 1979]
- ... even on very simple graph classes: planar [Díaz et al., 2012], split, bipartite [Epstein et al., 2012], interval of diameter 2 [Foucaud et al., 2017], bounded treewidth [Li \& Pilipczuk, 2022]
- W[2]-complete (so no $f(\mathrm{MD}) n^{k}$ algorithm), even on subcubic graphs [Hartung \& Nichterlein, 2013]
- No polynomial-time algorithm can give better than a $\log (n)$ approximation factor, even on subcubic graphs [HN13]

A few positive results...

- Linear-time: cographs [Epstein et al., 2012], cactus block graphs [Hoffmann et al., 2016]
- Polynomial-time: outerplanar graphs [Díaz et al., 2012]
- FPT for bounded treelength [Belmonte et al., 2015]

Inclusion diagram

Inclusion diagram

Undirected graphs

Inclusion diagram

Definitions

- A directed graph may contain 2-cycles

Definitions

- A directed graph may contain 2-cycles, an oriented graph cannot.

Definitions

- A directed graph may contain 2-cycles, an oriented graph cannot.
- If we remove the orientation, we obtain the underlying undirected graph

Definitions

- A directed graph may contain 2-cycles, an oriented graph cannot.
- If we remove the orientation, we obtain the underlying undirected graph

The definitions for Metric Dimension do not change:

- b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$
- $R \subseteq V(\vec{G})$ is a resolving set of G iff for every pair $\{u, v\}$, there is $b \in R$ that resolves u and v
- $\operatorname{MD}(\vec{G})=$ minimum size of a resolving set of \vec{G}

Definitions

- A directed graph may contain 2-cycles, an oriented graph cannot.
- If we remove the orientation, we obtain the underlying undirected graph

The definitions for Metric Dimension do not change:

- b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$
- $R \subseteq V(\vec{G})$ is a resolving set of G iff for every pair $\{u, v\}$, there is $b \in R$ that resolves u and v
- $\operatorname{MD}(\vec{G})=$ minimum size of a resolving set of \vec{G}

But there will be reachability problems!

Previous work

- Introduced in [Chartrand et al., 2000] in a more constrained way: every vertex has to be reachable from the whole resolving set

Previous work

- Introduced in [Chartrand et al., 2000] in a more constrained way: every vertex has to be reachable from the whole resolving set
- Study of $\operatorname{MD}(\vec{G})$ for "nice" oriented classes: Cayley digraphs [Fehr, 2006], tournaments [Lozano, 2013], orientations of wheels \& fans [Pancahayani \& Simanjuntak, 2014], De Brujin and Kautz digraphs [Rajan et al., 2015]

Previous work

- Introduced in [Chartrand et al., 2000] in a more constrained way: every vertex has to be reachable from the whole resolving set
- Study of $\operatorname{MD}(\vec{G})$ for "nice" oriented classes: Cayley digraphs [Fehr, 2006], tournaments [Lozano, 2013], orientations of wheels \& fans [Pancahayani \& Simanjuntak, 2014], De Brujin and Kautz digraphs [Rajan et al., 2015]
- Relaxed definition we use introduced in [Araujo et al., 2023+]: every vertex must be reachable from some vertex in the resolving set

Previous work

- Introduced in [Chartrand et al., 2000] in a more constrained way: every vertex has to be reachable from the whole resolving set
- Study of $\operatorname{MD}(\vec{G})$ for "nice" oriented classes: Cayley digraphs [Fehr, 2006], tournaments [Lozano, 2013], orientations of wheels \& fans [Pancahayani \& Simanjuntak, 2014], De Brujin and Kautz digraphs [Rajan et al., 2015]
- Relaxed definition we use introduced in [Araujo et al., 2023+]: every vertex must be reachable from some vertex in the resolving set
- NP-complete on bipartite DAGs with maximum degree 8 and maximum distance 4 [Araujo et al., 2023+]

Previous work

- Introduced in [Chartrand et al., 2000] in a more constrained way: every vertex has to be reachable from the whole resolving set
- Study of $\operatorname{MD}(\vec{G})$ for "nice" oriented classes: Cayley digraphs [Fehr, 2006], tournaments [Lozano, 2013], orientations of wheels \& fans [Pancahayani \& Simanjuntak, 2014], De Brujin and Kautz digraphs [Rajan et al., 2015]
- Relaxed definition we use introduced in [Araujo et al., 2023+]: every vertex must be reachable from some vertex in the resolving set
- NP-complete on bipartite DAGs with maximum degree 8 and maximum distance 4 [Araujo et al., 2023+]
- Linear-time algorithm for orientations of trees [Araujo et al., 2023+]

Algorithm for orientations of trees

Theorem [Araujo et al., 2023+]
A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Algorithm for orientations of trees

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Proof

1. Every vertex must be reachable from at least one vertex in R

Algorithm for orientations of trees

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Proof

1. Every vertex must be reachable from at least one vertex in $R \Rightarrow$ Every source is in R

Algorithm for orientations of trees

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Proof

1. Every vertex must be reachable from at least one vertex in $R \Rightarrow$ Every source is in R
2. Resolving pairs of vertices

Algorithm for orientations of trees

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Proof

1. Every vertex must be reachable from at least one vertex in $R \Rightarrow$ Every source is in R
2. Resolving pairs of vertices \Rightarrow For every set of k in-twins,

Algorithm for orientations of trees

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Proof

1. Every vertex must be reachable from at least one vertex in $R \Rightarrow$ Every source is in R
2. Resolving pairs of vertices \Rightarrow For every set of k in-twins, $k-1$ of them are in R

Algorithm for orientations of trees

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Proof

1. Every vertex must be reachable from at least one vertex in $R \Rightarrow$ Every source is in R
2. Resolving pairs of vertices \Rightarrow For every set of k in-twins, $k-1$ of them are in R

Holds for all directed graphs!

Algorithm for orientations of trees

Theorem [Araujo et al., 2023+]

A minimum-size resolving set R of an orientation of a tree can be computed in linear time.

Proof

1. Every vertex must be reachable from at least one vertex in $R \Rightarrow$ Every source is in R
2. Resolving pairs of vertices \Rightarrow For every set of k in-twins, $k-1$ of them are in R

Holds for all directed graphs!
3 The set R constructed this way is a resolving set

Our results

Theorem [D., Foucaud \& Hakanen, 2023+]
Linear-time algorithms for minimum-size resolving sets of directed trees and orientations of unicyclic graphs.

Our results

Theorem [D., Foucaud \& Hakanen, 2023+]
Linear-time algorithms for minimum-size resolving sets of directed trees and orientations of unicyclic graphs.

Theorem [D., Foucaud \& Hakanen, 2023+]
NP-complete for planar triangle-free DAGs of maximum degree 6.

Our results

Theorem [D., Foucaud \& Hakanen, 2023+]
Linear-time algorithms for minimum-size resolving sets of directed trees and orientations of unicyclic graphs.

Theorem [D., Foucaud \& Hakanen, 2023+]
NP-complete for planar triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud \& Hakanen, 2023+]
FPT algorithm parameterized by directed modular width.

Directed trees (1) Necessary vertices

Theorem [D., Foucaud \& Hakanen, 2023+]
There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Directed trees (1) Necessary vertices

Theorem [D., Foucaud \& Hakanen, 2023+]
There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Algorithm: two mandatory things

- Sources + resolving sets of in-twins

Directed trees (1) Necessary vertices

Theorem [D., Foucaud \& Hakanen, 2023+]
There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Algorithm: two mandatory things

- Sources + resolving sets of in-twins
- Resolving legs of strongly connected components

Directed trees (2) Dummy vertices

Definition

In a strongly connected component C

Directed trees (2) Dummy vertices

Definition

In a strongly connected component C, every $v \in C$ such that an arc $\overrightarrow{u v}$ with $u \notin C$ exists is a dummy vertex.

Directed trees (2) Dummy vertices

Definition

In a strongly connected component C, every $v \in C$ such that an arc $\overrightarrow{u v}$ with $u \notin C$ exists is a dummy vertex.

Directed trees (2) Dummy vertices

Definition

In a strongly connected component C, every $v \in C$ such that an arc $\overrightarrow{u v}$ with $u \notin C$ exists is a dummy vertex.

Every dummy vertex is a representative of the vertices in the resolving set behind the in-arc

Directed trees (2) Dummy vertices

Definition

In a strongly connected component C, every $v \in C$ such that an arc $\overrightarrow{u v}$ with $u \notin C$ exists is a dummy vertex.

Every dummy vertex is a representative of the vertices in the resolving set behind the in-arc
They act like degree ≥ 3 vertices for the purpose of legs

Directed trees (3) First problem: escalators

Definition

An escalator is a strongly connected component with:

- a path as an underlying graph

Directed trees (3) First problem: escalators

Definition

An escalator is a strongly connected component with:

- a path as an underlying graph
- only one in-arc from outside, at one end

Directed trees (3) First problem: escalators

Definition

An escalator is a strongly connected component with:

- a path as an underlying graph
- only one in-arc from outside, at one end
- the only possible out-arcs to outside are at the other end

Directed trees (3) First problem: escalators

Definition

An escalator is a strongly connected component with:

- a path as an underlying graph
- only one in-arc from outside, at one end
- the only possible out-arcs to outside are at the other end

\rightarrow These are almost-in-twins

Directed trees (3) First problem: escalators

Definition

An escalator is a strongly connected component with:

- a path as an underlying graph
- only one in-arc from outside, at one end
- the only possible out-arcs to outside are at the other end

\rightarrow These are almost-in-twins
- For each set of k almost-in-twins, take $k-1$ in the resolving set

Directed trees (4) Second problem: special legs

Definition

In a strongly connected component, a special leg is a leg that:

- spans from a dummy or degree ≥ 3 (in the component) vertex

Directed trees (4) Second problem: special legs

Definition

In a strongly connected component, a special leg is a leg that:

- spans from a dummy or degree ≥ 3 (in the component) vertex
- has at least one out-arc from a vertex other than its endpoint

Directed trees (4) Second problem: special legs

Definition

In a strongly connected component, a special leg is a leg that:

- spans from a dummy or degree ≥ 3 (in the component) vertex
- has at least one out-arc from a vertex other than its endpoint

\rightarrow Conflict between pairs!

Directed trees (4) Second problem: special legs

Definition

In a strongly connected component, a special leg is a leg that:

- spans from a dummy or degree ≥ 3 (in the component) vertex
- has at least one out-arc from a vertex other than its endpoint

\rightarrow Conflict between pairs!
- Take the endpoint of each special leg

Directed trees (5) Third problem: some paths...

The strongly connected components whose underlying graph is a path (snake $=$ any positive length) with the following patterns:

Directed trees (5) Third problem: some paths...

The strongly connected components whose underlying graph is a path (snake $=$ any positive length) with the following patterns:
onn ono

... require one or two endpoints.

Directed trees (6) The final algorithm

Theorem [D., Foucaud \& Hakanen, 2023+]
There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Directed trees (6) The final algorithm

Theorem [D., Foucaud \& Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins

Directed trees (6) The final algorithm

Theorem [D., Foucaud \& Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

Directed trees (6) The final algorithm

Theorem [D., Foucaud \& Hakanen, 2023+]
There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component
2.1 Mark the dummy vertices

Directed trees (6) The final algorithm

Theorem [D., Foucaud \& Hakanen, 2023+]
There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component
2.1 Mark the dummy vertices
2.2 Solve the special paths cases (previous slide)

Directed trees (6) The final algorithm

Theorem [D., Foucaud \& Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component
2.1 Mark the dummy vertices
2.2 Solve the special paths cases (previous slide)
2.3 Take the endpoint of every special leg

Directed trees (6) The final algorithm

Theorem [D., Foucaud \& Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component
2.1 Mark the dummy vertices
2.2 Solve the special paths cases (previous slide)
2.3 Take the endpoint of every special leg
2.4 Resolve the remaining standard legs

Directed trees (6) The final algorithm

Theorem [D., Foucaud \& Hakanen, 2023+]

There is a linear-time algorithm computing a minimum-size resolving set of a directed tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component
2.1 Mark the dummy vertices
2.2 Solve the special paths cases (previous slide)
2.3 Take the endpoint of every special leg
2.4 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

Orientations of unicyclic graphs

Theorem [D., Foucaud \& Hakanen, 2023+]
There is a linear-time algorithm computing a minimum-size resolving set of the orientation of a unicyclic graph.

Orientations of unicyclic graphs

Theorem [D., Foucaud \& Hakanen, 2023+]
There is a linear-time algorithm computing a minimum-size resolving set of the orientation of a unicyclic graph.

Algorithm

1. Take every source
2. Resolve each set of in-twins

Orientations of unicyclic graphs

Theorem [D., Foucaud \& Hakanen, 2023+]
There is a linear-time algorithm computing a minimum-size resolving set of the orientation of a unicyclic graph.

Algorithm

1. Take every source
2. Resolve each set of in-twins with some priority

Orientations of unicyclic graphs

Theorem [D., Foucaud \& Hakanen, 2023+]
There is a linear-time algorithm computing a minimum-size resolving set of the orientation of a unicyclic graph.

Algorithm

1. Take every source
2. Manage a few special cases (at most one more vertex)
3. Resolve each set of in-twins with some priority

No sink in the cycle

No sink in the cycle

Which in-twin?

No sink in the cycle

Which in-twin?

Priority

Give priority to in-twins in the cycle

No sink in the cycle

Which in-twin?

Priority

Give priority to in-twins in the cycle

No sink in the cycle

Which in-twin?

Priority

Give priority to in-twins in the cycle

\triangle Special case (Reachability)
\Rightarrow Take one vertex from the cycle

No sink in the cycle

Which in-twin?

Priority

Give priority to in-twins in the cycle

\triangle Special case (Reachability)
\Rightarrow Take one vertex from the cycle

©Special case (Unresolved pair)

No sink in the cycle

Which in-twin?

\triangle Special case (Reachability)
\Rightarrow Take one vertex from the cycle

\triangle Special case (Unresolved pair)
\Rightarrow Take one unresolved vertex

One sink in the cycle

\triangle Special case
(Unresolved pair)

One sink in the cycle

Ⓢpecial case
(Unresolved pair)
\Rightarrow Take one
unresolved vertex

One sink in the cycle

©Special case
(Unresolved pair)
\triangle Special case
(Unresolved pair)
\Rightarrow Take one
unresolved vertex

One sink in the cycle

©Special case
(Unresolved pair)
\Rightarrow Take one
unresolved vertex

\triangle Special case
(Unresolved pair)
\Rightarrow Take one vertex
along the long path

One sink in the cycle

©Special case
(Unresolved pair)
\Rightarrow Take one
unresolved vertex

\triangle Special case
(Unresolved pair)
\Rightarrow Take one vertex
along the long path

©Special case
(Unresolved pair)

One sink in the cycle

©Special case
(Unresolved pair)
\Rightarrow Take one
unresolved vertex

\triangle Special case
(Unresolved pair)
\Rightarrow Take one vertex
along the long path

\triangle Special case
(Unresolved pair)
\Rightarrow Take the sink of the cycle

Two sinks in the cycle

Two sinks in the cycle

Two sinks in the cycle

Two sinks in the cycle

§Special case (Unresolved pair)

Two sinks in the cycle

Those are concerning paths,

Two sinks in the cycle

Those are concerning paths, which can be either unfixable

Two sinks in the cycle

Those are concerning paths, which can be either unfixable or fixable.

Two sinks in the cycle

Those are concerning paths, which can be either unfixable or fixable.

Special case \& Priority

- If all the concerning paths are unfixable, then, take the sink

Two sinks in the cycle

Those are concerning paths, which can be either unfixable or fixable.

Special case \& Priority

- If all the concerning paths are unfixable, then, take the sink
- Otherwise,

Two sinks in the cycle

Those are concerning paths, which can be either unfixable or fixable.

Special case \& Priority

- If all the concerning paths are unfixable, then, take the sink
- Otherwise, priority to in-twins in unfixable paths

Two sinks in the cycle

Those are concerning paths, which can be either unfixable or fixable.

Special case \& Priority

- If all the concerning paths are unfixable, then, take the sink
- Otherwise, priority to in-twins in unfixable paths, then concerning paths

More than two sinks in the cycle

More than two sinks in the cycle

\rightarrow No problem!

More than two sinks in the cycle

\rightarrow No problem!
Linear-time algorithm

1. Take every source
2. Manage the special cases
3. Resolve each set of in-twins with some priority

NP-hardness (1) The gadgets

Theorem [D., Foucaud \& Hakanen, 2023+]
Directed Metric Dimension is NP-complete for planar triangle-free DAGs of maximum degree 6.

NP-hardness (1) The gadgets

Theorem [D., Foucaud \& Hakanen, 2023+]
Directed Metric Dimension is NP-complete for planar triangle-free DAGs of maximum degree 6 .

Proof
Reduction from Vertex Cover on planar cubic biconnected undirected graphs [Mohar, 2001]

NP-hardness (1) The gadgets

Theorem [D., Foucaud \& Hakanen, 2023+]
Directed Metric Dimension is NP-complete for planar triangle-free DAGs of maximum degree 6 .

Proof
Reduction from Vertex Cover on planar cubic biconnected undirected graphs [Mohar, 2001]
In particular, such graphs have a perfect matching [Petersen, 1891].

NP-hardness (1) The gadgets

Theorem [D., Foucaud \& Hakanen, 2023+]
Directed Metric Dimension is NP-complete for planar triangle-free DAGs of maximum degree 6 .

Proof
Reduction from Vertex Cover on planar cubic biconnected undirected graphs [Mohar, 2001]
In particular, such graphs have a perfect matching [Petersen, 1891].
If $u v \in$ perfect matching
$u \bigcirc \longrightarrow v$

NP-hardness (1) The gadgets

Theorem [D., Foucaud \& Hakanen, 2023+]
Directed Metric Dimension is NP-complete for planar triangle-free DAGs of maximum degree 6 .

Proof
Reduction from Vertex Cover on planar cubic biconnected undirected graphs [Mohar, 2001]
In particular, such graphs have a perfect matching [Petersen, 1891].
If $u v \in$ perfect matching

NP-hardness (1) The gadgets

Theorem [D., Foucaud \& Hakanen, 2023+]
Directed Metric Dimension is NP-complete for planar triangle-free DAGs of maximum degree 6 .

Proof
Reduction from Vertex Cover on planar cubic biconnected undirected graphs [Mohar, 2001]
In particular, such graphs have a perfect matching [Petersen, 1891].
If $u v \in$ perfect matching
If $u v \notin$ perfect matching

NP-hardness (1) The gadgets

Theorem [D., Foucaud \& Hakanen, 2023+]
Directed Metric Dimension is NP-complete for planar triangle-free DAGs of maximum degree 6 .

Proof
Reduction from Vertex Cover on planar cubic biconnected undirected graphs [Mohar, 2001]
In particular, such graphs have a perfect matching [Petersen, 1891].
If $u v \in$ perfect matching
If $u v \notin$ perfect matching

NP-hardness (1) The gadgets

Theorem [D., Foucaud \& Hakanen, 2023+]
Directed Metric Dimension is NP-complete for planar triangle-free DAGs of maximum degree 6 .

Proof
Reduction from Vertex Cover on planar cubic biconnected undirected graphs [Mohar, 2001]
In particular, such graphs have a perfect matching [Petersen, 1891].
If $u v \in$ perfect matching
If $u v \notin$ perfect matching

NP-hardness (1) The gadgets

Theorem [D., Foucaud \& Hakanen, 2023+]
Directed Metric Dimension is NP-complete for planar triangle-free DAGs of maximum degree 6 .

Proof
Reduction from Vertex Cover on planar cubic biconnected undirected graphs [Mohar, 2001]
In particular, such graphs have a perfect matching [Petersen, 1891].
If $u v \in$ perfect matching
If $u v \notin$ perfect matching

NP-hardness (2) Combining gadgets
We start from a planar cubic graph

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

NP-hardness (2) Combining gadgets

We start from a planar cubic graph and a perfect matching We obtain a planar triangle-free DAG of max degree 6

Vertex cover $\leq k \Leftrightarrow \mathrm{MD} \leq k+\frac{4|E|}{3}$

NP-hardness (2) Combining gadgets

We start from a planar cubic graph and a perfect matching We obtain a planar triangle-free DAG of max degree 6

Vertex cover $\leq k \Rightarrow \mathrm{MD} \leq k+\frac{4|E|}{3}$

NP-hardness (2) Combining gadgets

We start from a planar cubic graph and a perfect matching We obtain a planar triangle-free DAG of max degree 6

Vertex cover $\leq k \Rightarrow \mathrm{MD} \leq k+\frac{4|E|}{3}$

NP-hardness (2) Combining gadgets

We start from a planar cubic graph and a perfect matching We obtain a planar triangle-free DAG of max degree 6

Vertex cover $\leq k \Rightarrow \mathrm{MD} \leq k+\frac{4|E|}{3}$

NP-hardness (2) Combining gadgets

We start from a planar cubic graph and a perfect matching We obtain a planar triangle-free DAG of max degree 6

Vertex cover $\leq k \Leftarrow \mathrm{MD} \leq k+\frac{4|E|}{3}$

NP-hardness (2) Combining gadgets

We start from a planar cubic graph and a perfect matching We obtain a planar triangle-free DAG of max degree 6

Vertex cover $\leq k \Leftarrow \mathrm{MD} \leq k+\frac{4|E|}{3}$

NP-hardness (2) Combining gadgets

We start from a planar cubic graph and a perfect matching We obtain a planar triangle-free DAG of max degree 6

Vertex cover $\leq k \Leftarrow \mathrm{MD} \leq k+\frac{4|E|}{3}$

NP-hardness (2) Combining gadgets

We start from a planar cubic graph and a perfect matching We obtain a planar triangle-free DAG of max degree 6

Vertex cover $\leq k \Leftarrow \mathrm{MD} \leq k+\frac{4|E|}{3}$

NP-hardness (2) Combining gadgets

We start from a planar cubic graph and a perfect matching We obtain a planar triangle-free DAG of max degree 6

Vertex cover $\leq k \Leftarrow \mathrm{MD} \leq k+\frac{4|E|}{3}$

NP-hardness (2) Combining gadgets

We start from a planar cubic graph and a perfect matching We obtain a planar triangle-free DAG of max degree 6

Vertex cover $\leq k \Leftarrow \mathrm{MD} \leq k+\frac{4|E|}{3}$

NP-hardness (2) Combining gadgets

We start from a planar cubic graph and a perfect matching We obtain a planar triangle-free DAG of max degree 6

Vertex cover $\leq k \Leftarrow \mathrm{MD} \leq k+\frac{4|E|}{3}$

NP-hardness (2) Combining gadgets

We start from a planar cubic graph and a perfect matching We obtain a planar triangle-free DAG of max degree 6

Vertex cover $\leq k \Leftarrow \mathrm{MD} \leq k+\frac{4|E|}{3}$

NP-hardness (2) Combining gadgets

We start from a planar cubic graph and a perfect matching We obtain a planar triangle-free DAG of max degree 6

Vertex cover $\leq k \Leftarrow \mathrm{MD} \leq k+\frac{4|E|}{3}$

NP-hardness (2) Combining gadgets

We start from a planar cubic graph and a perfect matching We obtain a planar triangle-free DAG of max degree 6

Vertex cover $\leq k \Leftrightarrow \mathrm{MD} \leq k+\frac{4|E|}{3}$

Parameterized complexity

Theorem [D., Foucaud \& Hakanen, 2023+]

There is an $\mathscr{O}\left(n^{3}+m\right)+\mathscr{O}\left(t^{5} 2^{t^{2}} n\right)$ algorithm computing the metric dimension of a digraph of order n, size m and directed modular width at most t.

Parameterized complexity

Theorem [D., Foucaud \& Hakanen, 2023+]

There is an $\mathscr{O}\left(n^{3}+m\right)+\mathscr{O}\left(t^{5} 2^{t^{2}} n\right)$ algorithm computing the metric dimension of a digraph of order n, size m and directed modular width at most t.

Algorithm
Generalized from [Belmonte et al., 2017]

Parameterized complexity

Theorem [D., Foucaud \& Hakanen, 2023+]

There is an $\mathscr{O}\left(n^{3}+m\right)+\mathscr{O}\left(t^{5} 2^{t^{2}} n\right)$ algorithm computing the metric dimension of a digraph of order n, size m and directed modular width at most t.

Algorithm
Generalized from [Belmonte et al., 2017]

1. Compute all the distances [Floyd-Warshall]
2. Obtain an optimal modular decomposition [McConnell \& de Montgolfier, 2005]

Parameterized complexity

Theorem [D., Foucaud \& Hakanen, 2023+]

There is an $\mathscr{O}\left(n^{3}+m\right)+\mathscr{O}\left(t^{5} 2^{t^{2}} n\right)$ algorithm computing the metric dimension of a digraph of order n, size m and directed modular width at most t.

Algorithm
Generalized from [Belmonte et al., 2017]

1. Compute all the distances [Floyd-Warshall]
2. Obtain an optimal modular decomposition [McConnell \& de Montgolfier, 2005]
3. Start from the trivial modules, and combine them (dynamic programming)

Modular decompositions

Definition [Gallai, 1967] (and many others)
A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.

Modular decompositions

Definition [Gallai, 1967] (and many others)
A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations. The width of a decomposition is the max number of modules in one factorization step.

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations. The width of a decomposition is the max number of modules in one factorization step.

width 3

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations. The width of a decomposition is the max number of modules in one factorization step.
The modular width is the $\mathbf{m i n}$ width over all decompositions.

width 3

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations. The width of a decomposition is the max number of modules in one factorization step.
The modular width is the $\mathbf{m i n}$ width over all decompositions.

mw 3

width 3

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$,

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}, \operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}, \operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}, \operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width

0
0

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}, \operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$
3. Given vertices $x_{1}, x_{2} \in M_{i}$,
```
x1O
X2O
```


Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$
3. Given vertices $x_{1}, x_{2} \in M_{i}$, if $\operatorname{dist}\left(x_{1}, y\right) \neq \operatorname{dist}\left(x_{2}, y\right)$,

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$
3. Given vertices $x_{1}, x_{2} \in M_{i}$, if $\operatorname{dist}\left(x_{1}, y\right) \neq \operatorname{dist}\left(x_{2}, y\right)$, then $y \in M_{i}$

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$
3. Given vertices $x_{1}, x_{2} \in M_{i}$, if $\operatorname{dist}\left(x_{1}, y\right) \neq \operatorname{dist}\left(x_{2}, y\right)$, then $y \in M_{i}$ and one of x_{1}, x_{2} will resolve y and $z \notin M_{i}$

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$
3. Given vertices $x_{1}, x_{2} \in M_{i}$, if $\operatorname{dist}\left(x_{1}, y\right) \neq \operatorname{dist}\left(x_{2}, y\right)$, then $y \in M_{i}$ and one of x_{1}, x_{2} will resolve y and $z \notin M_{i}$
\Rightarrow Combining local solutions is "easy" in this case

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$
3. Given vertices $x_{1}, x_{2} \in M_{i}$, if $\operatorname{dist}\left(x_{1}, y\right) \neq \operatorname{dist}\left(x_{2}, y\right)$, then $y \in M_{i}$ and one of x_{1}, x_{2} will resolve y and $z \notin M_{i}$
\Rightarrow Combining local solutions is "easy" in this case

But what if, for some $y \in M_{i}$,

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$
3. Given vertices $x_{1}, x_{2} \in M_{i}$, if $\operatorname{dist}\left(x_{1}, y\right) \neq \operatorname{dist}\left(x_{2}, y\right)$, then $y \in M_{i}$ and one of x_{1}, x_{2} will resolve y and $z \notin M_{i}$
\Rightarrow Combining local solutions is "easy" in this case

But what if, for some $y \in M_{i}$, $\operatorname{dist}\left(x_{1}, y\right)=\operatorname{dist}\left(x_{2}, y\right)$ for every $x_{1}, x_{2} \in M_{i}$?

d-constant vertices

Definition

In a module M, a vertex x is d-constant if $\operatorname{dist}(w, x)=d$ for every $w \in M_{R}$ (where M_{R} is the local solution).

d-constant vertices

Definition

In a module M, a vertex x is d-constant if $\operatorname{dist}(w, x)=d$ for every $w \in M_{R}$ (where M_{R} is the local solution).

d-constant vertices

Definition

In a module M, a vertex x is d-constant if $\operatorname{dist}(w, x)=d$ for every $w \in M_{R}$ (where M_{R} is the local solution).

© The local solution M_{R} does not resolve x and y !

d-constant vertices

Definition

In a module M, a vertex x is d-constant if $\operatorname{dist}(w, x)=d$ for every $w \in M_{R}$ (where M_{R} is the local solution).

\triangle The local solution M_{R} does not resolve x and y !
\Rightarrow We need to keep track of all d-constant vertices...

d-constant vertices

Definition

In a module M, a vertex x is d-constant if $\operatorname{dist}(w, x)=d$ for every $w \in M_{R}$ (where M_{R} is the local solution).

© The local solution M_{R} does not resolve x and y !
\Rightarrow We need to keep track of all d-constant vertices...
... but $d \in\{1, \ldots, \mathrm{mw}, \infty\}$ so their number is bounded by $\mathrm{mw}+1$ for each factor!
\Rightarrow We can brute-force them when combining local solutions.

New inclusion diagram:

New inclusion diagram: $(*)=$ our results

Final words

Our contribution to Metric Dimension on directed graphs

- NP-completeness for a very restricted class
- Linear-time algorithms (directed trees, orientations of unicyclic)
- FPT algorithm using modular decomposition

Final words

Our contribution to Metric Dimension on directed graphs

- NP-completeness for a very restricted class
- Linear-time algorithms (directed trees, orientations of unicyclic)
- FPT algorithm using modular decomposition

Future work

1. Orientations of/Directed outerplanar?
2. DAGs of maximum distance 2 ?
3. Other parameterizations? Practical implementation?

Final words

Our contribution to Metric Dimension on directed graphs

- NP-completeness for a very restricted class
- Linear-time algorithms (directed trees, orientations of unicyclic)
- FPT algorithm using modular decomposition

Future work

1. Orientations of/Directed outerplanar?
2. DAGs of maximum distance 2?
3. Other parameterizations? Practical implementation?

