
Algorithms for the Metric Dimension problem on
directed graphs

Antoine Dailly, Florent Foucaud, Anni Hakanen
LIMOS, Clermont-Ferrand

Séminaire Algo du GREYC
February 28, 2023

1/29

Where does it come from?

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least
four satellites for position

Question
How can we transpose this approach to graphs?

2/29

Where does it come from?

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least
four satellites for position

Question
How can we transpose this approach to graphs?

2/29

Where does it come from?

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least
four satellites for position

Question
How can we transpose this approach to graphs?

2/29

Where does it come from?

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least
four satellites for position

Question
How can we transpose this approach to graphs?

2/29

Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/29

Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/29

Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/29

Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/29

Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/29

Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/29

Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/29

Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/29

Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/29

Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn
3. Trees?

The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.

4/29

Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn

3. Trees?

The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.

4/29

Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn
3. Trees?

The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.

4/29

Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn
3. Trees?

The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.

4/29

Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn
3. Trees?

The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points. If v has k legs, k −1 have ≥ 1 vertex in a resolving set.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.

4/29

Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn
3. Trees?

The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points. If v has k legs, k −1 have ≥ 1 vertex in a resolving set.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.
4/29

Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn
3. Trees? The simple leg rule gives an optimal resolving set

[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points. If v has k legs, k −1 have ≥ 1 vertex in a resolving set.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.
4/29

Complexity results

Metric Dimension is difficult!
Ï NP-complete... [Garey & Johnson, 1979]

Ï ... even on very simple graph classes: planar [Díaz et al.,
2012], split, bipartite [Epstein et al., 2012], interval of
diameter 2 [Foucaud et al., 2017], bounded treewidth [Li &
Pilipczuk, 2022]

Ï W[2]-complete (so no f (MD)nk algorithm), even on subcubic
graphs [Hartung & Nichterlein, 2013]

Ï No polynomial-time algorithm can give better than a log(n)
approximation factor, even on subcubic graphs [HN13]

A few positive results...
Ï Linear-time: cographs [Epstein et al., 2012], cactus block

graphs [Hoffmann et al., 2016]
Ï Polynomial-time: outerplanar graphs [Díaz et al., 2012]
Ï FPT for bounded treelength [Belmonte et al., 2015]

5/29

Complexity results
Metric Dimension is difficult!
Ï NP-complete... [Garey & Johnson, 1979]

Ï ... even on very simple graph classes: planar [Díaz et al.,
2012], split, bipartite [Epstein et al., 2012], interval of
diameter 2 [Foucaud et al., 2017], bounded treewidth [Li &
Pilipczuk, 2022]

Ï W[2]-complete (so no f (MD)nk algorithm), even on subcubic
graphs [Hartung & Nichterlein, 2013]

Ï No polynomial-time algorithm can give better than a log(n)
approximation factor, even on subcubic graphs [HN13]

A few positive results...
Ï Linear-time: cographs [Epstein et al., 2012], cactus block

graphs [Hoffmann et al., 2016]
Ï Polynomial-time: outerplanar graphs [Díaz et al., 2012]
Ï FPT for bounded treelength [Belmonte et al., 2015]

5/29

Complexity results
Metric Dimension is difficult!
Ï NP-complete... [Garey & Johnson, 1979]
Ï ... even on very simple graph classes: planar [Díaz et al.,

2012], split, bipartite [Epstein et al., 2012], interval of
diameter 2 [Foucaud et al., 2017], bounded treewidth [Li &
Pilipczuk, 2022]

Ï W[2]-complete (so no f (MD)nk algorithm), even on subcubic
graphs [Hartung & Nichterlein, 2013]

Ï No polynomial-time algorithm can give better than a log(n)
approximation factor, even on subcubic graphs [HN13]

A few positive results...
Ï Linear-time: cographs [Epstein et al., 2012], cactus block

graphs [Hoffmann et al., 2016]
Ï Polynomial-time: outerplanar graphs [Díaz et al., 2012]
Ï FPT for bounded treelength [Belmonte et al., 2015]

5/29

Complexity results
Metric Dimension is difficult!
Ï NP-complete... [Garey & Johnson, 1979]
Ï ... even on very simple graph classes: planar [Díaz et al.,

2012], split, bipartite [Epstein et al., 2012], interval of
diameter 2 [Foucaud et al., 2017], bounded treewidth [Li &
Pilipczuk, 2022]

Ï W[2]-complete (so no f (MD)nk algorithm), even on subcubic
graphs [Hartung & Nichterlein, 2013]

Ï No polynomial-time algorithm can give better than a log(n)
approximation factor, even on subcubic graphs [HN13]

A few positive results...
Ï Linear-time: cographs [Epstein et al., 2012], cactus block

graphs [Hoffmann et al., 2016]
Ï Polynomial-time: outerplanar graphs [Díaz et al., 2012]
Ï FPT for bounded treelength [Belmonte et al., 2015]

5/29

Complexity results
Metric Dimension is difficult!
Ï NP-complete... [Garey & Johnson, 1979]
Ï ... even on very simple graph classes: planar [Díaz et al.,

2012], split, bipartite [Epstein et al., 2012], interval of
diameter 2 [Foucaud et al., 2017], bounded treewidth [Li &
Pilipczuk, 2022]

Ï W[2]-complete (so no f (MD)nk algorithm), even on subcubic
graphs [Hartung & Nichterlein, 2013]

Ï No polynomial-time algorithm can give better than a log(n)
approximation factor, even on subcubic graphs [HN13]

A few positive results...
Ï Linear-time: cographs [Epstein et al., 2012], cactus block

graphs [Hoffmann et al., 2016]
Ï Polynomial-time: outerplanar graphs [Díaz et al., 2012]
Ï FPT for bounded treelength [Belmonte et al., 2015]

5/29

Complexity results
Metric Dimension is difficult!
Ï NP-complete... [Garey & Johnson, 1979]
Ï ... even on very simple graph classes: planar [Díaz et al.,

2012], split, bipartite [Epstein et al., 2012], interval of
diameter 2 [Foucaud et al., 2017], bounded treewidth [Li &
Pilipczuk, 2022]

Ï W[2]-complete (so no f (MD)nk algorithm), even on subcubic
graphs [Hartung & Nichterlein, 2013]

Ï No polynomial-time algorithm can give better than a log(n)
approximation factor, even on subcubic graphs [HN13]

A few positive results...
Ï Linear-time: cographs [Epstein et al., 2012], cactus block

graphs [Hoffmann et al., 2016]
Ï Polynomial-time: outerplanar graphs [Díaz et al., 2012]
Ï FPT for bounded treelength [Belmonte et al., 2015]

5/29

Inclusion diagram

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Directed graphs

Oriented graphs

6/29

Inclusion diagram

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Directed graphs

Oriented graphs

6/29

Inclusion diagram

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Directed graphs

Oriented graphs

6/29

Definitions
Ï A directed graph may contain 2-cycles

, an oriented graph
cannot.

Ï If we remove the orientation, we obtain the underlying
undirected graph

?

The definitions for Metric Dimension do not change:
Ï b resolves u and v if dist(b,u) ̸= dist(b,v)
Ï R ⊆V (

−→
G) is a resolving set of G iff for every pair {u,v }, there

is b ∈R that resolves u and v
Ï MD(

−→
G)= minimum size of a resolving set of

−→
G

But there will be reachability problems!

7/29

Definitions
Ï A directed graph may contain 2-cycles, an oriented graph

cannot.

Ï If we remove the orientation, we obtain the underlying
undirected graph

?

The definitions for Metric Dimension do not change:
Ï b resolves u and v if dist(b,u) ̸= dist(b,v)
Ï R ⊆V (

−→
G) is a resolving set of G iff for every pair {u,v }, there

is b ∈R that resolves u and v
Ï MD(

−→
G)= minimum size of a resolving set of

−→
G

But there will be reachability problems!

7/29

Definitions
Ï A directed graph may contain 2-cycles, an oriented graph

cannot.
Ï If we remove the orientation, we obtain the underlying

undirected graph

?

The definitions for Metric Dimension do not change:
Ï b resolves u and v if dist(b,u) ̸= dist(b,v)
Ï R ⊆V (

−→
G) is a resolving set of G iff for every pair {u,v }, there

is b ∈R that resolves u and v
Ï MD(

−→
G)= minimum size of a resolving set of

−→
G

But there will be reachability problems!

7/29

Definitions
Ï A directed graph may contain 2-cycles, an oriented graph

cannot.
Ï If we remove the orientation, we obtain the underlying

undirected graph

?

The definitions for Metric Dimension do not change:
Ï b resolves u and v if dist(b,u) ̸= dist(b,v)
Ï R ⊆V (

−→
G) is a resolving set of G iff for every pair {u,v }, there

is b ∈R that resolves u and v
Ï MD(

−→
G)= minimum size of a resolving set of

−→
G

But there will be reachability problems!

7/29

Definitions
Ï A directed graph may contain 2-cycles, an oriented graph

cannot.
Ï If we remove the orientation, we obtain the underlying

undirected graph

?

The definitions for Metric Dimension do not change:
Ï b resolves u and v if dist(b,u) ̸= dist(b,v)
Ï R ⊆V (

−→
G) is a resolving set of G iff for every pair {u,v }, there

is b ∈R that resolves u and v
Ï MD(

−→
G)= minimum size of a resolving set of

−→
G

But there will be reachability problems!
7/29

Previous work

Ï Introduced in [Chartrand et al., 2000] in a more constrained
way: every vertex has to be reachable from the whole
resolving set

Ï Study of MD(
−→
G) for "nice" oriented classes: Cayley digraphs

[Fehr, 2006], tournaments [Lozano, 2013], orientations of
wheels & fans [Pancahayani & Simanjuntak, 2014], De Brujin
and Kautz digraphs [Rajan et al., 2015]

Ï Relaxed definition we use introduced in [Araujo et al., 2023+]:
every vertex must be reachable from some vertex in the
resolving set

Ï NP-complete on bipartite DAGs with maximum degree 8 and
maximum distance 4 [Araujo et al., 2023+]

Ï Linear-time algorithm for orientations of trees [Araujo et al.,
2023+]

8/29

Previous work

Ï Introduced in [Chartrand et al., 2000] in a more constrained
way: every vertex has to be reachable from the whole
resolving set

Ï Study of MD(
−→
G) for "nice" oriented classes: Cayley digraphs

[Fehr, 2006], tournaments [Lozano, 2013], orientations of
wheels & fans [Pancahayani & Simanjuntak, 2014], De Brujin
and Kautz digraphs [Rajan et al., 2015]

Ï Relaxed definition we use introduced in [Araujo et al., 2023+]:
every vertex must be reachable from some vertex in the
resolving set

Ï NP-complete on bipartite DAGs with maximum degree 8 and
maximum distance 4 [Araujo et al., 2023+]

Ï Linear-time algorithm for orientations of trees [Araujo et al.,
2023+]

8/29

Previous work

Ï Introduced in [Chartrand et al., 2000] in a more constrained
way: every vertex has to be reachable from the whole
resolving set

Ï Study of MD(
−→
G) for "nice" oriented classes: Cayley digraphs

[Fehr, 2006], tournaments [Lozano, 2013], orientations of
wheels & fans [Pancahayani & Simanjuntak, 2014], De Brujin
and Kautz digraphs [Rajan et al., 2015]

Ï Relaxed definition we use introduced in [Araujo et al., 2023+]:
every vertex must be reachable from some vertex in the
resolving set

Ï NP-complete on bipartite DAGs with maximum degree 8 and
maximum distance 4 [Araujo et al., 2023+]

Ï Linear-time algorithm for orientations of trees [Araujo et al.,
2023+]

8/29

Previous work

Ï Introduced in [Chartrand et al., 2000] in a more constrained
way: every vertex has to be reachable from the whole
resolving set

Ï Study of MD(
−→
G) for "nice" oriented classes: Cayley digraphs

[Fehr, 2006], tournaments [Lozano, 2013], orientations of
wheels & fans [Pancahayani & Simanjuntak, 2014], De Brujin
and Kautz digraphs [Rajan et al., 2015]

Ï Relaxed definition we use introduced in [Araujo et al., 2023+]:
every vertex must be reachable from some vertex in the
resolving set

Ï NP-complete on bipartite DAGs with maximum degree 8 and
maximum distance 4 [Araujo et al., 2023+]

Ï Linear-time algorithm for orientations of trees [Araujo et al.,
2023+]

8/29

Previous work

Ï Introduced in [Chartrand et al., 2000] in a more constrained
way: every vertex has to be reachable from the whole
resolving set

Ï Study of MD(
−→
G) for "nice" oriented classes: Cayley digraphs

[Fehr, 2006], tournaments [Lozano, 2013], orientations of
wheels & fans [Pancahayani & Simanjuntak, 2014], De Brujin
and Kautz digraphs [Rajan et al., 2015]

Ï Relaxed definition we use introduced in [Araujo et al., 2023+]:
every vertex must be reachable from some vertex in the
resolving set

Ï NP-complete on bipartite DAGs with maximum degree 8 and
maximum distance 4 [Araujo et al., 2023+]

Ï Linear-time algorithm for orientations of trees [Araujo et al.,
2023+]

8/29

Algorithm for orientations of trees

A minimum-size resolving set R of an orientation of a tree can
be computed in linear time.

Theorem [Araujo et al., 2023+]

Proof
1. Every vertex must be reachable from at least one

vertex in R

⇒ Every source is in R
2. Resolving pairs of vertices

⇒ For every set of k
in-twins, k −1 of them are in R

Holds for all directed graphs!

3 The set R constructed this way is a resolving set

9/29

Algorithm for orientations of trees

A minimum-size resolving set R of an orientation of a tree can
be computed in linear time.

Theorem [Araujo et al., 2023+]

Proof
1. Every vertex must be reachable from at least one

vertex in R

⇒ Every source is in R
2. Resolving pairs of vertices

⇒ For every set of k
in-twins, k −1 of them are in R

Holds for all directed graphs!

3 The set R constructed this way is a resolving set

9/29

Algorithm for orientations of trees

A minimum-size resolving set R of an orientation of a tree can
be computed in linear time.

Theorem [Araujo et al., 2023+]

Proof
1. Every vertex must be reachable from at least one

vertex in R ⇒ Every source is in R

2. Resolving pairs of vertices

⇒ For every set of k
in-twins, k −1 of them are in R

Holds for all directed graphs!

3 The set R constructed this way is a resolving set

9/29

Algorithm for orientations of trees

A minimum-size resolving set R of an orientation of a tree can
be computed in linear time.

Theorem [Araujo et al., 2023+]

Proof
1. Every vertex must be reachable from at least one

vertex in R ⇒ Every source is in R
2. Resolving pairs of vertices

⇒ For every set of k
in-twins, k −1 of them are in R

Holds for all directed graphs!

3 The set R constructed this way is a resolving set

9/29

Algorithm for orientations of trees

A minimum-size resolving set R of an orientation of a tree can
be computed in linear time.

Theorem [Araujo et al., 2023+]

Proof
1. Every vertex must be reachable from at least one

vertex in R ⇒ Every source is in R
2. Resolving pairs of vertices ⇒ For every set of k

in-twins,

k −1 of them are in R

Holds for all directed graphs!

3 The set R constructed this way is a resolving set

9/29

Algorithm for orientations of trees

A minimum-size resolving set R of an orientation of a tree can
be computed in linear time.

Theorem [Araujo et al., 2023+]

Proof
1. Every vertex must be reachable from at least one

vertex in R ⇒ Every source is in R
2. Resolving pairs of vertices ⇒ For every set of k

in-twins, k −1 of them are in R

Holds for all directed graphs!

3 The set R constructed this way is a resolving set

9/29

Algorithm for orientations of trees

A minimum-size resolving set R of an orientation of a tree can
be computed in linear time.

Theorem [Araujo et al., 2023+]

Proof
1. Every vertex must be reachable from at least one

vertex in R ⇒ Every source is in R
2. Resolving pairs of vertices ⇒ For every set of k

in-twins, k −1 of them are in R

Holds for all directed graphs!

3 The set R constructed this way is a resolving set

9/29

Algorithm for orientations of trees

A minimum-size resolving set R of an orientation of a tree can
be computed in linear time.

Theorem [Araujo et al., 2023+]

Proof
1. Every vertex must be reachable from at least one

vertex in R ⇒ Every source is in R
2. Resolving pairs of vertices ⇒ For every set of k

in-twins, k −1 of them are in R

Holds for all directed graphs!

3 The set R constructed this way is a resolving set

9/29

Our results

Linear-time algorithms for minimum-size resolving sets of di-
rected trees and orientations of unicyclic graphs.

Theorem [D., Foucaud & Hakanen, 2023+]

NP-complete for planar triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023+]

FPT algorithm parameterized by directed modular width.

Theorem [D., Foucaud & Hakanen, 2023+]

10/29

Our results

Linear-time algorithms for minimum-size resolving sets of di-
rected trees and orientations of unicyclic graphs.

Theorem [D., Foucaud & Hakanen, 2023+]

NP-complete for planar triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023+]

FPT algorithm parameterized by directed modular width.

Theorem [D., Foucaud & Hakanen, 2023+]

10/29

Our results

Linear-time algorithms for minimum-size resolving sets of di-
rected trees and orientations of unicyclic graphs.

Theorem [D., Foucaud & Hakanen, 2023+]

NP-complete for planar triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023+]

FPT algorithm parameterized by directed modular width.

Theorem [D., Foucaud & Hakanen, 2023+]

10/29

Directed trees (1) Necessary vertices

There is a linear-time algorithm computing a minimum-size re-
solving set of a directed tree.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm: two mandatory things
Ï Sources + resolving sets of in-twins

Ï Resolving legs of strongly connected components

11/29

Directed trees (1) Necessary vertices

There is a linear-time algorithm computing a minimum-size re-
solving set of a directed tree.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm: two mandatory things
Ï Sources + resolving sets of in-twins

Ï Resolving legs of strongly connected components

11/29

Directed trees (1) Necessary vertices

There is a linear-time algorithm computing a minimum-size re-
solving set of a directed tree.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm: two mandatory things
Ï Sources + resolving sets of in-twins
Ï Resolving legs of strongly connected components

11/29

Directed trees (2) Dummy vertices

In a strongly connected component C

, every v ∈C such that an
arc −→uv with u ̸∈C exists is a dummy vertex.

Definition

Every dummy vertex is a representative of the vertices in the
resolving set behind the in-arc
They act like degree ≥ 3 vertices for the purpose of legs

12/29

Directed trees (2) Dummy vertices

In a strongly connected component C , every v ∈C such that an
arc −→uv with u ̸∈C exists is a dummy vertex.

Definition

Every dummy vertex is a representative of the vertices in the
resolving set behind the in-arc
They act like degree ≥ 3 vertices for the purpose of legs

12/29

Directed trees (2) Dummy vertices

In a strongly connected component C , every v ∈C such that an
arc −→uv with u ̸∈C exists is a dummy vertex.

Definition

Every dummy vertex is a representative of the vertices in the
resolving set behind the in-arc
They act like degree ≥ 3 vertices for the purpose of legs

12/29

Directed trees (2) Dummy vertices

In a strongly connected component C , every v ∈C such that an
arc −→uv with u ̸∈C exists is a dummy vertex.

Definition

Every dummy vertex is a representative of the vertices in the
resolving set behind the in-arc

They act like degree ≥ 3 vertices for the purpose of legs

12/29

Directed trees (2) Dummy vertices

In a strongly connected component C , every v ∈C such that an
arc −→uv with u ̸∈C exists is a dummy vertex.

Definition

Every dummy vertex is a representative of the vertices in the
resolving set behind the in-arc
They act like degree ≥ 3 vertices for the purpose of legs

12/29

Directed trees (3) First problem: escalators

An escalator is a strongly connected component with:
Ï a path as an underlying graph

Ï only one in-arc from outside, at one end
Ï the only possible out-arcs to outside are at the other end

Definition

→ These are almost-in-twins

Ï For each set of k almost-in-twins, take k −1 in the
resolving set

13/29

Directed trees (3) First problem: escalators

An escalator is a strongly connected component with:
Ï a path as an underlying graph
Ï only one in-arc from outside, at one end

Ï the only possible out-arcs to outside are at the other end

Definition

→ These are almost-in-twins

Ï For each set of k almost-in-twins, take k −1 in the
resolving set

13/29

Directed trees (3) First problem: escalators

An escalator is a strongly connected component with:
Ï a path as an underlying graph
Ï only one in-arc from outside, at one end
Ï the only possible out-arcs to outside are at the other end

Definition

→ These are almost-in-twins

Ï For each set of k almost-in-twins, take k −1 in the
resolving set

13/29

Directed trees (3) First problem: escalators

An escalator is a strongly connected component with:
Ï a path as an underlying graph
Ï only one in-arc from outside, at one end
Ï the only possible out-arcs to outside are at the other end

Definition

→ These are almost-in-twins

Ï For each set of k almost-in-twins, take k −1 in the
resolving set

13/29

Directed trees (3) First problem: escalators

An escalator is a strongly connected component with:
Ï a path as an underlying graph
Ï only one in-arc from outside, at one end
Ï the only possible out-arcs to outside are at the other end

Definition

→ These are almost-in-twins

Ï For each set of k almost-in-twins, take k −1 in the
resolving set

13/29

Directed trees (4) Second problem: special legs

In a strongly connected component, a special leg is a leg that:
Ï spans from a dummy or degree ≥ 3 (in the component)

vertex

Ï has at least one out-arc from a vertex other than its
endpoint

Definition

→ Conflict between pairs!

Ï Take the endpoint of each special leg

14/29

Directed trees (4) Second problem: special legs

In a strongly connected component, a special leg is a leg that:
Ï spans from a dummy or degree ≥ 3 (in the component)

vertex
Ï has at least one out-arc from a vertex other than its

endpoint

Definition

→ Conflict between pairs!

Ï Take the endpoint of each special leg

14/29

Directed trees (4) Second problem: special legs

In a strongly connected component, a special leg is a leg that:
Ï spans from a dummy or degree ≥ 3 (in the component)

vertex
Ï has at least one out-arc from a vertex other than its

endpoint

Definition

→ Conflict between pairs!

Ï Take the endpoint of each special leg

14/29

Directed trees (4) Second problem: special legs

In a strongly connected component, a special leg is a leg that:
Ï spans from a dummy or degree ≥ 3 (in the component)

vertex
Ï has at least one out-arc from a vertex other than its

endpoint

Definition

→ Conflict between pairs!

Ï Take the endpoint of each special leg
14/29

Directed trees (5) Third problem: some paths...
The strongly connected components whose underlying graph is a
path (snake = any positive length) with the following patterns:

... require one or two endpoints.

15/29

Directed trees (5) Third problem: some paths...
The strongly connected components whose underlying graph is a
path (snake = any positive length) with the following patterns:

... require one or two endpoints.
15/29

Directed trees (6) The final algorithm

There is a linear-time algorithm computing a minimum-size re-
solving set of a directed tree.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
1. Take every source, resolve each set of almost-in-twins

2. For each strongly connected component

2.1 Mark the dummy vertices
2.2 Solve the special paths cases (previous slide)
2.3 Take the endpoint of every special leg
2.4 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

16/29

Directed trees (6) The final algorithm

There is a linear-time algorithm computing a minimum-size re-
solving set of a directed tree.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
1. Take every source, resolve each set of almost-in-twins

2. For each strongly connected component

2.1 Mark the dummy vertices
2.2 Solve the special paths cases (previous slide)
2.3 Take the endpoint of every special leg
2.4 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

16/29

Directed trees (6) The final algorithm

There is a linear-time algorithm computing a minimum-size re-
solving set of a directed tree.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Mark the dummy vertices
2.2 Solve the special paths cases (previous slide)
2.3 Take the endpoint of every special leg
2.4 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

16/29

Directed trees (6) The final algorithm

There is a linear-time algorithm computing a minimum-size re-
solving set of a directed tree.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Mark the dummy vertices

2.2 Solve the special paths cases (previous slide)
2.3 Take the endpoint of every special leg
2.4 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

16/29

Directed trees (6) The final algorithm

There is a linear-time algorithm computing a minimum-size re-
solving set of a directed tree.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Mark the dummy vertices
2.2 Solve the special paths cases (previous slide)

2.3 Take the endpoint of every special leg
2.4 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

16/29

Directed trees (6) The final algorithm

There is a linear-time algorithm computing a minimum-size re-
solving set of a directed tree.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Mark the dummy vertices
2.2 Solve the special paths cases (previous slide)
2.3 Take the endpoint of every special leg

2.4 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

16/29

Directed trees (6) The final algorithm

There is a linear-time algorithm computing a minimum-size re-
solving set of a directed tree.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Mark the dummy vertices
2.2 Solve the special paths cases (previous slide)
2.3 Take the endpoint of every special leg
2.4 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

16/29

Directed trees (6) The final algorithm

There is a linear-time algorithm computing a minimum-size re-
solving set of a directed tree.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Mark the dummy vertices
2.2 Solve the special paths cases (previous slide)
2.3 Take the endpoint of every special leg
2.4 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

16/29

Orientations of unicyclic graphs

There is a linear-time algorithm computing a minimum-size re-
solving set of the orientation of a unicyclic graph.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
1. Take every source

2. Manage a few special cases (at most one more vertex)

3. Resolve each set of in-twins

with some priority

17/29

Orientations of unicyclic graphs

There is a linear-time algorithm computing a minimum-size re-
solving set of the orientation of a unicyclic graph.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
1. Take every source

2. Manage a few special cases (at most one more vertex)

3. Resolve each set of in-twins

with some priority

17/29

Orientations of unicyclic graphs

There is a linear-time algorithm computing a minimum-size re-
solving set of the orientation of a unicyclic graph.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
1. Take every source

2. Manage a few special cases (at most one more vertex)

3. Resolve each set of in-twins with some priority

17/29

Orientations of unicyclic graphs

There is a linear-time algorithm computing a minimum-size re-
solving set of the orientation of a unicyclic graph.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
1. Take every source
2. Manage a few special cases (at most one more vertex)
3. Resolve each set of in-twins with some priority

17/29

No sink in the cycle

Which in-twin?

Give priority to in-twins in
the cycle

Priority

"Special case (Reachability)

⇒ Take one vertex from the cycle

"Special case (Unresolved pair)

⇒ Take one unresolved vertex

18/29

No sink in the cycle

Which in-twin?

Give priority to in-twins in
the cycle

Priority

"Special case (Reachability)

⇒ Take one vertex from the cycle

"Special case (Unresolved pair)

⇒ Take one unresolved vertex

18/29

No sink in the cycle

Which in-twin?

Give priority to in-twins in
the cycle

Priority

"Special case (Reachability)

⇒ Take one vertex from the cycle

"Special case (Unresolved pair)

⇒ Take one unresolved vertex

18/29

No sink in the cycle

Which in-twin?

Give priority to in-twins in
the cycle

Priority

"Special case (Reachability)

⇒ Take one vertex from the cycle

"Special case (Unresolved pair)

⇒ Take one unresolved vertex

18/29

No sink in the cycle

Which in-twin?

Give priority to in-twins in
the cycle

Priority

"Special case (Reachability)
⇒ Take one vertex from the cycle

"Special case (Unresolved pair)

⇒ Take one unresolved vertex

18/29

No sink in the cycle

Which in-twin?

Give priority to in-twins in
the cycle

Priority

"Special case (Reachability)
⇒ Take one vertex from the cycle

"Special case (Unresolved pair)

⇒ Take one unresolved vertex

18/29

No sink in the cycle

Which in-twin?

Give priority to in-twins in
the cycle

Priority

"Special case (Reachability)
⇒ Take one vertex from the cycle

"Special case (Unresolved pair)
⇒ Take one unresolved vertex

18/29

One sink in the cycle

"Special case
(Unresolved pair)

⇒ Take one
unresolved vertex

"Special case
(Unresolved pair)
⇒ Take one vertex
along the long path

"Special case
(Unresolved pair)
⇒ Take the sink of

the cycle

19/29

One sink in the cycle

"Special case
(Unresolved pair)

⇒ Take one
unresolved vertex

"Special case
(Unresolved pair)
⇒ Take one vertex
along the long path

"Special case
(Unresolved pair)
⇒ Take the sink of

the cycle

19/29

One sink in the cycle

"Special case
(Unresolved pair)

⇒ Take one
unresolved vertex

"Special case
(Unresolved pair)

⇒ Take one vertex
along the long path

"Special case
(Unresolved pair)
⇒ Take the sink of

the cycle

19/29

One sink in the cycle

"Special case
(Unresolved pair)

⇒ Take one
unresolved vertex

"Special case
(Unresolved pair)
⇒ Take one vertex
along the long path

"Special case
(Unresolved pair)
⇒ Take the sink of

the cycle

19/29

One sink in the cycle

"Special case
(Unresolved pair)

⇒ Take one
unresolved vertex

"Special case
(Unresolved pair)
⇒ Take one vertex
along the long path

"Special case
(Unresolved pair)

⇒ Take the sink of
the cycle

19/29

One sink in the cycle

"Special case
(Unresolved pair)

⇒ Take one
unresolved vertex

"Special case
(Unresolved pair)
⇒ Take one vertex
along the long path

"Special case
(Unresolved pair)
⇒ Take the sink of

the cycle

19/29

Two sinks in the cycle

"Special case (Unresolved pair)
Those are concerning paths,

which can be either unfixable or fixable.

Ï If all the concerning paths are unfixable, then, take the sink

Ï Otherwise,

priority to in-twins in unfixable paths, then
concerning paths

Special case & Priority

20/29

Two sinks in the cycle

"Special case (Unresolved pair)
Those are concerning paths,

which can be either unfixable or fixable.

Ï If all the concerning paths are unfixable, then, take the sink

Ï Otherwise,

priority to in-twins in unfixable paths, then
concerning paths

Special case & Priority

20/29

Two sinks in the cycle

"Special case (Unresolved pair)
Those are concerning paths,

which can be either unfixable or fixable.

Ï If all the concerning paths are unfixable, then, take the sink

Ï Otherwise,

priority to in-twins in unfixable paths, then
concerning paths

Special case & Priority

20/29

Two sinks in the cycle

"Special case (Unresolved pair)

Those are concerning paths,

which can be either unfixable or fixable.

Ï If all the concerning paths are unfixable, then, take the sink

Ï Otherwise,

priority to in-twins in unfixable paths, then
concerning paths

Special case & Priority

20/29

Two sinks in the cycle

"Special case (Unresolved pair)

Those are concerning paths,

which can be either unfixable or fixable.

Ï If all the concerning paths are unfixable, then, take the sink

Ï Otherwise,

priority to in-twins in unfixable paths, then
concerning paths

Special case & Priority

20/29

Two sinks in the cycle

"Special case (Unresolved pair)

Those are concerning paths,
which can be either unfixable

or fixable.

Ï If all the concerning paths are unfixable, then, take the sink

Ï Otherwise,

priority to in-twins in unfixable paths, then
concerning paths

Special case & Priority

20/29

Two sinks in the cycle

"Special case (Unresolved pair)

Those are concerning paths,
which can be either unfixable or fixable.

Ï If all the concerning paths are unfixable, then, take the sink

Ï Otherwise,

priority to in-twins in unfixable paths, then
concerning paths

Special case & Priority

20/29

Two sinks in the cycle

"Special case (Unresolved pair)

Those are concerning paths,
which can be either unfixable or fixable.

Ï If all the concerning paths are unfixable, then, take the sink

Ï Otherwise,

priority to in-twins in unfixable paths, then
concerning paths

Special case & Priority

20/29

Two sinks in the cycle

"Special case (Unresolved pair)

Those are concerning paths,
which can be either unfixable or fixable.

Ï If all the concerning paths are unfixable, then, take the sink
Ï Otherwise,

priority to in-twins in unfixable paths, then
concerning paths

Special case & Priority

20/29

Two sinks in the cycle

"Special case (Unresolved pair)

Those are concerning paths,
which can be either unfixable or fixable.

Ï If all the concerning paths are unfixable, then, take the sink
Ï Otherwise, priority to in-twins in unfixable paths

, then
concerning paths

Special case & Priority

20/29

Two sinks in the cycle

"Special case (Unresolved pair)

Those are concerning paths,
which can be either unfixable or fixable.

Ï If all the concerning paths are unfixable, then, take the sink
Ï Otherwise, priority to in-twins in unfixable paths, then

concerning paths

Special case & Priority

20/29

More than two sinks in the cycle

→ No problem!

Linear-time algorithm
1. Take every source
2. Manage the special cases
3. Resolve each set of in-twins with some priority

21/29

More than two sinks in the cycle

→ No problem!

Linear-time algorithm
1. Take every source
2. Manage the special cases
3. Resolve each set of in-twins with some priority

21/29

More than two sinks in the cycle

→ No problem!

Linear-time algorithm
1. Take every source
2. Manage the special cases
3. Resolve each set of in-twins with some priority

21/29

NP-hardness (1) The gadgets

Directed Metric Dimension is NP-complete for planar
triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023+]

Proof
Reduction from Vertex Cover on planar cubic biconnected
undirected graphs [Mohar, 2001]

In particular, such graphs have a perfect matching [Petersen, 1891].
If uv ∈ perfect matching

u v

If uv ̸∈ perfect matching

u v

22/29

NP-hardness (1) The gadgets

Directed Metric Dimension is NP-complete for planar
triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023+]

Proof
Reduction from Vertex Cover on planar cubic biconnected
undirected graphs [Mohar, 2001]

In particular, such graphs have a perfect matching [Petersen, 1891].
If uv ∈ perfect matching

u v

If uv ̸∈ perfect matching

u v

22/29

NP-hardness (1) The gadgets

Directed Metric Dimension is NP-complete for planar
triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023+]

Proof
Reduction from Vertex Cover on planar cubic biconnected
undirected graphs [Mohar, 2001]
In particular, such graphs have a perfect matching [Petersen, 1891].

If uv ∈ perfect matching

u v

If uv ̸∈ perfect matching

u v

22/29

NP-hardness (1) The gadgets

Directed Metric Dimension is NP-complete for planar
triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023+]

Proof
Reduction from Vertex Cover on planar cubic biconnected
undirected graphs [Mohar, 2001]
In particular, such graphs have a perfect matching [Petersen, 1891].

If uv ∈ perfect matching

u v

If uv ̸∈ perfect matching

u v

22/29

NP-hardness (1) The gadgets

Directed Metric Dimension is NP-complete for planar
triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023+]

Proof
Reduction from Vertex Cover on planar cubic biconnected
undirected graphs [Mohar, 2001]
In particular, such graphs have a perfect matching [Petersen, 1891].

If uv ∈ perfect matching

u v

If uv ̸∈ perfect matching

u v

22/29

NP-hardness (1) The gadgets

Directed Metric Dimension is NP-complete for planar
triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023+]

Proof
Reduction from Vertex Cover on planar cubic biconnected
undirected graphs [Mohar, 2001]
In particular, such graphs have a perfect matching [Petersen, 1891].

If uv ∈ perfect matching

u v

If uv ̸∈ perfect matching

u v

22/29

NP-hardness (1) The gadgets

Directed Metric Dimension is NP-complete for planar
triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023+]

Proof
Reduction from Vertex Cover on planar cubic biconnected
undirected graphs [Mohar, 2001]
In particular, such graphs have a perfect matching [Petersen, 1891].

If uv ∈ perfect matching

u v

If uv ̸∈ perfect matching

u v

22/29

NP-hardness (1) The gadgets

Directed Metric Dimension is NP-complete for planar
triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023+]

Proof
Reduction from Vertex Cover on planar cubic biconnected
undirected graphs [Mohar, 2001]
In particular, such graphs have a perfect matching [Petersen, 1891].

If uv ∈ perfect matching

u v

If uv ̸∈ perfect matching

u v

22/29

NP-hardness (1) The gadgets

Directed Metric Dimension is NP-complete for planar
triangle-free DAGs of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023+]

Proof
Reduction from Vertex Cover on planar cubic biconnected
undirected graphs [Mohar, 2001]
In particular, such graphs have a perfect matching [Petersen, 1891].

If uv ∈ perfect matching

u v

If uv ̸∈ perfect matching

u v

22/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph

and a perfect matching
We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k ⇔ MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k ⇒ MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k ⇒ MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k ⇒ MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k ⇐ MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k ⇐ MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k ⇐ MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k ⇐ MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k ⇐ MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k ⇐ MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k ⇐ MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k ⇐ MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k ⇐ MD≤ k + 4|E |
3

23/29

NP-hardness (2) Combining gadgets
We start from a planar cubic graph and a perfect matching

We obtain a planar triangle-free DAG of max degree 6

Vertex cover ≤ k ⇔ MD≤ k + 4|E |
3

23/29

Parameterized complexity

There is an O(n3+m)+O(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
Generalized from [Belmonte et al., 2017]

1. Compute all the distances [Floyd-Warshall]
2. Obtain an optimal modular decomposition [McConnell & de

Montgolfier, 2005]
3. Start from the trivial modules, and combine them (dynamic

programming)

24/29

Parameterized complexity

There is an O(n3+m)+O(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
Generalized from [Belmonte et al., 2017]

1. Compute all the distances [Floyd-Warshall]
2. Obtain an optimal modular decomposition [McConnell & de

Montgolfier, 2005]
3. Start from the trivial modules, and combine them (dynamic

programming)

24/29

Parameterized complexity

There is an O(n3+m)+O(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
Generalized from [Belmonte et al., 2017]

1. Compute all the distances [Floyd-Warshall]
2. Obtain an optimal modular decomposition [McConnell & de

Montgolfier, 2005]

3. Start from the trivial modules, and combine them (dynamic
programming)

24/29

Parameterized complexity

There is an O(n3+m)+O(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.

Theorem [D., Foucaud & Hakanen, 2023+]

Algorithm
Generalized from [Belmonte et al., 2017]

1. Compute all the distances [Floyd-Warshall]
2. Obtain an optimal modular decomposition [McConnell & de

Montgolfier, 2005]
3. Start from the trivial modules, and combine them (dynamic

programming)

24/29

Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.

A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

25/29

Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.

A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

25/29

Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.

A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

25/29

Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.

A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

25/29

Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.

The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

25/29

Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.

The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

25/29

Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.

The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

25/29

Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.

The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

25/29

Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.

The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3

mw 3

25/29

Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3

mw 3

25/29

Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3
25/29

Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj ,

dist(x ,z)= dist(y ,z) and
dist(z ,x)= dist(z ,y)

⇒ All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the

modular width

or infinite
⇒ Allows us to bound DP steps by f (mw)

3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mwx1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

26/29

Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)

⇒ All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the

modular width

or infinite
⇒ Allows us to bound DP steps by f (mw)

3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z=

≤mwx1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

26/29

Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width

or infinite
⇒ Allows us to bound DP steps by f (mw)

3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z=

≤mwx1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

26/29

Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width

or infinite
⇒ Allows us to bound DP steps by f (mw)

3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

26/29

Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

26/29

Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)

3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

26/29

Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2

y̸=
z̸= y

x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

26/29

Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi , if dist(x1,y) ̸= dist(x2,y),

then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2
y̸=

z̸= y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

26/29

Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi , if dist(x1,y) ̸= dist(x2,y), then

y ∈Mi

and one of x1,x2 will resolve y and z ̸∈Mi
⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2
y̸=

z̸= y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

26/29

Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi , if dist(x1,y) ̸= dist(x2,y), then

y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2
y

̸=

z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

26/29

Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi , if dist(x1,y) ̸= dist(x2,y), then

y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi
⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2
y

̸=

z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

26/29

Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi , if dist(x1,y) ̸= dist(x2,y), then

y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi
⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mwx1

x2

y̸=
z̸=

y

x1

x2

=

But what if, for some y ∈Mi ,

dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

26/29

Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi , if dist(x1,y) ̸= dist(x2,y), then

y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi
⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mwx1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

26/29

d-constant vertices

In a module M, a vertex x is d-constant if dist(w ,x) = d for
every w ∈MR (where MR is the local solution).

Definition

w

x
d

y
d

"The local solution MR does not resolve x and y !

⇒ We need to keep track of all d-constant vertices...

... but d ∈ {1, . . . ,mw,∞} so their number is bounded by mw+1 for
each factor!

⇒ We can brute-force them when combining local solutions.

27/29

d-constant vertices

In a module M, a vertex x is d-constant if dist(w ,x) = d for
every w ∈MR (where MR is the local solution).

Definition

w

x
d

y
d

"The local solution MR does not resolve x and y !

⇒ We need to keep track of all d-constant vertices...

... but d ∈ {1, . . . ,mw,∞} so their number is bounded by mw+1 for
each factor!

⇒ We can brute-force them when combining local solutions.

27/29

d-constant vertices

In a module M, a vertex x is d-constant if dist(w ,x) = d for
every w ∈MR (where MR is the local solution).

Definition

w

x
d y

d

"The local solution MR does not resolve x and y !

⇒ We need to keep track of all d-constant vertices...

... but d ∈ {1, . . . ,mw,∞} so their number is bounded by mw+1 for
each factor!

⇒ We can brute-force them when combining local solutions.

27/29

d-constant vertices

In a module M, a vertex x is d-constant if dist(w ,x) = d for
every w ∈MR (where MR is the local solution).

Definition

w

x
d y

d

"The local solution MR does not resolve x and y !

⇒ We need to keep track of all d-constant vertices...

... but d ∈ {1, . . . ,mw,∞} so their number is bounded by mw+1 for
each factor!

⇒ We can brute-force them when combining local solutions.

27/29

d-constant vertices

In a module M, a vertex x is d-constant if dist(w ,x) = d for
every w ∈MR (where MR is the local solution).

Definition

w

x
d y

d

"The local solution MR does not resolve x and y !

⇒ We need to keep track of all d-constant vertices...

... but d ∈ {1, . . . ,mw,∞} so their number is bounded by mw+1 for
each factor!

⇒ We can brute-force them when combining local solutions.
27/29

New inclusion diagram:

(∗) = our results

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Directed graphs

directed tree (∗)

Oriented graphs

orientation of unicyclic (∗)

orientation of tree

orientation of tree

bipartite
DAGs

planar
DAGs (∗)

orientations of planar (∗)

FPT modular-width (∗)

28/29

New inclusion diagram: (∗) = our results

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Directed graphs

directed tree (∗)

Oriented graphs

orientation of unicyclic (∗)

orientation of tree

orientation of tree

bipartite
DAGs

planar
DAGs (∗)

orientations of planar (∗)

FPT modular-width (∗)

28/29

Final words
Our contribution to Metric Dimension on directed graphs
Ï NP-completeness for a very restricted class
Ï Linear-time algorithms (directed trees, orientations of

unicyclic)
Ï FPT algorithm using modular decomposition

Future work
1. Orientations of/Directed outerplanar?
2. DAGs of maximum distance 2?
3. Other parameterizations? Practical implementation?

29/29

Final words
Our contribution to Metric Dimension on directed graphs
Ï NP-completeness for a very restricted class
Ï Linear-time algorithms (directed trees, orientations of

unicyclic)
Ï FPT algorithm using modular decomposition

Future work
1. Orientations of/Directed outerplanar?
2. DAGs of maximum distance 2?
3. Other parameterizations? Practical implementation?

29/29

Final words
Our contribution to Metric Dimension on directed graphs
Ï NP-completeness for a very restricted class
Ï Linear-time algorithms (directed trees, orientations of

unicyclic)
Ï FPT algorithm using modular decomposition

Future work
1. Orientations of/Directed outerplanar?
2. DAGs of maximum distance 2?
3. Other parameterizations? Practical implementation?

29/29

	Metric Dimension
	Towards digraphs: definitions and state of the art
	OUR RESULTS
	Directed trees
	Orientations of unicyclic graphs
	NP-hardness
	FPT by modular width algorithm
	Conclusion

