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Formal definition and bad news

Input: A weighted graph, two vertices s and t.
Hidden input: At most k blocked edges.
Objective: Go from s to t with minimum traveled distance.

k-CTP [Papadimitriou & Yannakakis, 1991]

Evaluating a strategy
Minimizing the competitive ratio traveled distance

optimal distance

However, unbounded even for planar graphs of treewidth 2!

1

1

1

εε

ε

εε

...

⇒ ratio = 2k+1+ε
1+ε ≈ 2k + 1

The construction can even be made unit-weighted...
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A bit of history
▶ k-CTP is PSPACE-complete [Papadimitriou & Yannakakis

and Bar-Noy & Schieber, 1991]
▶ Many variants (probabilistic, multiple travelers, sensing remote

edges, temporal graphs...) with applications to robot routing
▶ The Greedy strategy (follow a shortest path from s to t,

when blocked at x , compute a shortest path from x to t) can
be arbitrarily bad

▶ Two deterministic strategies reach competitive ratio 2k + 1 in
general graphs:

▶ Reposition [Westphal, 2008]: follow a shortest path P, when
a blocked edge is revealed on P, go back to s and compute a
new shortest path P

▶ Comparison [Xu, Hu, Su, Zhu & Zhu, 2009]: trade-off
between Greedy and Reposition

▶ Non-deterministic strategies can be quite good: competitive
ratio (1 +

√
2

2 )k + O(1) [Demaine et al., 2014], but no better
than k + 1 [Westphal, 2008]
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What now?

Tree

Cactus

Planar tw = 2
(even unit-weighted)

PlanarUnbounded
ratio 2k + 1

Constant
ratio

3

1

Outerplanar ≤ 2 3
4 k + O(1)

[Bergé et al., 2019]
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Our results

There is a strategy with competitive ratio 9 for unit-weighted
outerplanar graphs.

Theorem [BBCDGLLP, 2024]

→ Corollary: quotient between maximum and minimum weights
bounded by s ⇒ competitive ratio 9s

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

There is a family of weighted outerplanar graphs on which no
strategy can have constant competitive ratio.

Theorem [BBCDGLLP, 2024]

6/15



Our results

There is a strategy with competitive ratio 9 for unit-weighted
outerplanar graphs.

Theorem [BBCDGLLP, 2024]

→ Corollary: quotient between maximum and minimum weights
bounded by s ⇒ competitive ratio 9s

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

There is a family of weighted outerplanar graphs on which no
strategy can have constant competitive ratio.

Theorem [BBCDGLLP, 2024]

6/15



Our results

There is a strategy with competitive ratio 9 for unit-weighted
outerplanar graphs.

Theorem [BBCDGLLP, 2024]

→ Corollary: quotient between maximum and minimum weights
bounded by s ⇒ competitive ratio 9s

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

There is a family of weighted outerplanar graphs on which no
strategy can have constant competitive ratio.

Theorem [BBCDGLLP, 2024]

6/15



Shells and cows

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

YAY!

1 24 8

YAY!

→ No strategy can be better than this, which has ratio 9
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Competitive ratio 9 on unweighted outerplanar graphs

There is a strategy with competitive ratio 9 for unit-weighted
outerplanar graphs.

Theorem [BBCDGLLP, 2024]

Proof Sketch
1. Manage articulation points to simplify and decompose the

graph
2. Use exponential balancing while managing chords, using

induction to iterate
Main idea: going from one side to the other without going back to
the start can be useful!
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Managing articulation points

Let F be a monotone family. If A achieves competitive ratio C
on graphs of F with no articulation point, then, the strategy:

1.
2.

achieves competitive ratio C on F .

Lemma

s ts = s1
t1 s2 t2 s3 t3 = t

= =
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Sides and chords

Upper side

Lower side

s

s ′

t

Vertical chord

Horizontal chord

→ When following a path, we always take open horizontal chords
and can ignore what they allow to skip
→ If one side is blocked, then, we switch to the other and can
reapply the simplification
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Exponential balancing and vertical chords

Budget = 1248 Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67
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Proof of the ratio

s t
D

D

Ratio ≤ 5

s t
D D

D

Ratio ≤ 6

s t
D D

D

Ratio ≤ 9

update: D ← 2D

▶ Core exponential balancing loop:

ratio ≤ 9
▶ Going back within leftover budget ensures that the ratio

remains ≤ 9

12/15



Proof of the ratio

s t
D

D

Ratio ≤ 5

s t
D D

D

Ratio ≤ 6

s t
D D

D

Ratio ≤ 9

update: D ← 2D

▶ Core exponential balancing loop: ratio ≤ 9

▶ Going back within leftover budget ensures that the ratio
remains ≤ 9

12/15



Proof of the ratio

s t
D

D

Ratio ≤ 5

s t
D D

D

Ratio ≤ 6

s t
D D

D

Ratio ≤ 9

update: D ← 2D

▶ Core exponential balancing loop: ratio ≤ 9
▶ Going back within leftover budget ensures that the ratio

remains ≤ 9

12/15



Arbitrarily weighted outerplanar graphs

There is a family of weighted outerplanar graphs on which no
strategy can have constant competitive ratio.

Theorem [BBCDGLLP, 2024]

Sketch of proof
We construct Hi by induction such that no strategy can achieve
competitive ratio Ci = i + 1

2 .

H0: 1s t
Competitive ratio 1 > 1

2
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Building Hi+1 from Hi

Ci

αH (1)i

αH (2)
i . . .

αH
(N

)
i

η

η
η

s = s1 tN = t

t1 = s2
t2 = s3

tN−1 = sN

▶ Strategy: either crossing st, or going down. If going down,
either ending up at t, or going back to s to cross st.

▶ Carefully choosing α and η small enough and N large enough
gives competitive ratio > Ci + 1 = Ci+1.
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Summary

and perspectives!

Tree

Cactus

Planar tw = 2
(even unit-weighted)

Planar

Unbounded
ratio 2k + 1

Constant
ratio

3

1

Outerplanar
(unit-weighted)

Outerplanar
(arbitrarily weighted)

9

≤ 2 3
4 k + O(1)

p-outerplanar
(unit-weighted)

???

???
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