
A Canadian is traveling on an outerplanar graph...

Laurent Beaudou, Pierre Bergé, Vsevolod Chernyshev,
Antoine Dailly, Yan Gerard, Aurélie Lagoutte,

Vincent Limouzy, Lucas Pastor

Funded by ANR GRALMECO

Séminaire du LAMA
January 16th 2025

1/15



The Canadian Traveler

6

1

2

1

6 17

2

2

3

2

2

3

2

1

1

2

2

3

TargetStart

Traveled distance = 14619
Optimal distance = 8

▶ Some edges are blocked, discovered when visiting an endpoint
▶ We can always reach the target

2/15



The Canadian Traveler

6

1

2

1

6 17

2

2

3

2

2

3

2

1

1

2

2

3

TargetStart

Traveled distance = 1

4619
Optimal distance = 8

▶ Some edges are blocked, discovered when visiting an endpoint
▶ We can always reach the target

2/15



The Canadian Traveler

6

1

2

1

6 17

2

2

3

2

2

3

2

1

1

2

2

3

TargetStart

Traveled distance = 1

4619
Optimal distance = 8

▶ Some edges are blocked, discovered when visiting an endpoint

▶ We can always reach the target

2/15



The Canadian Traveler

6

1

2

1

6 17

2

2

3

2

2

3

2

1

1
2

2

3

TargetStart

Traveled distance =

1

4

619
Optimal distance = 8

▶ Some edges are blocked, discovered when visiting an endpoint

▶ We can always reach the target

2/15



The Canadian Traveler

6

1

2

1

6 17

2

2

3

2

2

3

2

1

1

2

2

3

TargetStart

Traveled distance =

14

6

19
Optimal distance = 8

▶ Some edges are blocked, discovered when visiting an endpoint

▶ We can always reach the target

2/15



The Canadian Traveler

6

1

2

1

6 17

2

2

3

2

2

3

2

1

1

2

2

3

TargetStart

Traveled distance =

146

19

Optimal distance = 8

▶ Some edges are blocked, discovered when visiting an endpoint
▶ We can always reach the target

2/15



The Canadian Traveler

6

1

2

1

6 17

2

2

3

2

2

3

2

1

1

2

2

3

TargetStart

Traveled distance =

146

19
Optimal distance = 8

▶ Some edges are blocked, discovered when visiting an endpoint
▶ We can always reach the target

2/15



Formal definition and bad news

Input: A weighted graph, two vertices s and t.
Hidden input: At most k blocked edges.
Objective: Go from s to t with minimum traveled distance.

k-CTP [Papadimitriou & Yannakakis, 1991]

Evaluating a strategy
Minimizing the competitive ratio traveled distance

optimal distance

However, unbounded even for planar graphs of treewidth 2!

1

1

1

εε

ε

εε

...

⇒ ratio = 2k+1+ε
1+ε ≈ 2k + 1

The construction can even be made unit-weighted...

3/15



Formal definition and bad news

Input: A weighted graph, two vertices s and t.
Hidden input: At most k blocked edges.
Objective: Go from s to t with minimum traveled distance.

k-CTP [Papadimitriou & Yannakakis, 1991]

Evaluating a strategy
Minimizing the competitive ratio traveled distance

optimal distance
However, unbounded even for planar graphs of treewidth 2!

1

1

1

ε

ε

ε

ε

ε

...

⇒ ratio = 2k+1+ε
1+ε ≈ 2k + 1

The construction can even be made unit-weighted...

3/15



Formal definition and bad news

Input: A weighted graph, two vertices s and t.
Hidden input: At most k blocked edges.
Objective: Go from s to t with minimum traveled distance.

k-CTP [Papadimitriou & Yannakakis, 1991]

Evaluating a strategy
Minimizing the competitive ratio traveled distance

optimal distance
However, unbounded even for planar graphs of treewidth 2!

1

1

1

ε

ε

ε

ε

ε

... ⇒ ratio = 2k+1+ε
1+ε ≈ 2k + 1

The construction can even be made unit-weighted...

3/15



Formal definition and bad news

Input: A weighted graph, two vertices s and t.
Hidden input: At most k blocked edges.
Objective: Go from s to t with minimum traveled distance.

k-CTP [Papadimitriou & Yannakakis, 1991]

Evaluating a strategy
Minimizing the competitive ratio traveled distance

optimal distance
However, unbounded even for planar graphs of treewidth 2!

1

1

1

ε

ε

ε

ε

ε

... ⇒ ratio = 2k+1+ε
1+ε ≈ 2k + 1

The construction can even be made unit-weighted...
3/15



A bit of history
▶ k-CTP is PSPACE-complete [Papadimitriou & Yannakakis

and Bar-Noy & Schieber, 1991]
▶ Many variants (probabilistic, multiple travelers, sensing remote

edges, temporal graphs...) with applications to robot routing
▶ The Greedy strategy (follow a shortest path from s to t,

when blocked at x , compute a shortest path from x to t) can
be arbitrarily bad

▶ Two deterministic strategies reach competitive ratio 2k + 1 in
general graphs:

▶ Reposition [Westphal, 2008]: follow a shortest path P, when
a blocked edge is revealed on P, go back to s and compute a
new shortest path P

▶ Comparison [Xu, Hu, Su, Zhu & Zhu, 2009]: trade-off
between Greedy and Reposition

▶ Non-deterministic strategies can be quite good: competitive
ratio (1 +

√
2

2 )k + O(1) [Demaine et al., 2014], but no better
than k + 1 [Westphal, 2008]

4/15



A bit of history
▶ k-CTP is PSPACE-complete [Papadimitriou & Yannakakis

and Bar-Noy & Schieber, 1991]
▶ Many variants (probabilistic, multiple travelers, sensing remote

edges, temporal graphs...) with applications to robot routing
▶ The Greedy strategy (follow a shortest path from s to t,

when blocked at x , compute a shortest path from x to t) can
be arbitrarily bad

▶ Two deterministic strategies reach competitive ratio 2k + 1 in
general graphs:
▶ Reposition [Westphal, 2008]: follow a shortest path P, when

a blocked edge is revealed on P, go back to s and compute a
new shortest path P

▶ Comparison [Xu, Hu, Su, Zhu & Zhu, 2009]: trade-off
between Greedy and Reposition

▶ Non-deterministic strategies can be quite good: competitive
ratio (1 +

√
2

2 )k + O(1) [Demaine et al., 2014], but no better
than k + 1 [Westphal, 2008]

4/15



A bit of history
▶ k-CTP is PSPACE-complete [Papadimitriou & Yannakakis

and Bar-Noy & Schieber, 1991]
▶ Many variants (probabilistic, multiple travelers, sensing remote

edges, temporal graphs...) with applications to robot routing
▶ The Greedy strategy (follow a shortest path from s to t,

when blocked at x , compute a shortest path from x to t) can
be arbitrarily bad

▶ Two deterministic strategies reach competitive ratio 2k + 1 in
general graphs:
▶ Reposition [Westphal, 2008]: follow a shortest path P, when

a blocked edge is revealed on P, go back to s and compute a
new shortest path P

▶ Comparison [Xu, Hu, Su, Zhu & Zhu, 2009]: trade-off
between Greedy and Reposition

▶ Non-deterministic strategies can be quite good: competitive
ratio (1 +

√
2

2 )k + O(1) [Demaine et al., 2014], but no better
than k + 1 [Westphal, 2008]

4/15



A bit of history
▶ k-CTP is PSPACE-complete [Papadimitriou & Yannakakis

and Bar-Noy & Schieber, 1991]
▶ Many variants (probabilistic, multiple travelers, sensing remote

edges, temporal graphs...) with applications to robot routing
▶ The Greedy strategy (follow a shortest path from s to t,

when blocked at x , compute a shortest path from x to t) can
be arbitrarily bad

▶ Two deterministic strategies reach competitive ratio 2k + 1 in
general graphs:
▶ Reposition [Westphal, 2008]: follow a shortest path P, when

a blocked edge is revealed on P, go back to s and compute a
new shortest path P

▶ Comparison [Xu, Hu, Su, Zhu & Zhu, 2009]: trade-off
between Greedy and Reposition

▶ Non-deterministic strategies can be quite good: competitive
ratio (1 +

√
2

2 )k + O(1) [Demaine et al., 2014], but no better
than k + 1 [Westphal, 2008]

4/15



What now?

Tree

Cactus

Planar tw = 2
(even unit-weighted)

PlanarUnbounded
ratio 2k + 1

Constant
ratio

3

1

Outerplanar ≤ 2 3
4 k + O(1)

[Bergé et al., 2019]

5/15



What now?

Tree

Cactus

Planar tw = 2
(even unit-weighted)

PlanarUnbounded
ratio 2k + 1

Constant
ratio

3

1

Outerplanar

≤ 2 3
4 k + O(1)

[Bergé et al., 2019]

5/15



What now?

Tree

Cactus

Planar tw = 2
(even unit-weighted)

PlanarUnbounded
ratio 2k + 1

Constant
ratio

3

1

Outerplanar ≤ 2 3
4 k + O(1)

[Bergé et al., 2019]

5/15



Our results

There is a strategy with competitive ratio 9 for unit-weighted
outerplanar graphs.

Theorem [BBCDGLLP, 2024]

→ Corollary: quotient between maximum and minimum weights
bounded by s ⇒ competitive ratio 9s

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

There is a family of weighted outerplanar graphs on which no
strategy can have constant competitive ratio.

Theorem [BBCDGLLP, 2024]

6/15



Our results

There is a strategy with competitive ratio 9 for unit-weighted
outerplanar graphs.

Theorem [BBCDGLLP, 2024]

→ Corollary: quotient between maximum and minimum weights
bounded by s ⇒ competitive ratio 9s

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

There is a family of weighted outerplanar graphs on which no
strategy can have constant competitive ratio.

Theorem [BBCDGLLP, 2024]

6/15



Our results

There is a strategy with competitive ratio 9 for unit-weighted
outerplanar graphs.

Theorem [BBCDGLLP, 2024]

→ Corollary: quotient between maximum and minimum weights
bounded by s ⇒ competitive ratio 9s

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

There is a family of weighted outerplanar graphs on which no
strategy can have constant competitive ratio.

Theorem [BBCDGLLP, 2024]

6/15



Shells and cows

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

YAY!

1 24 8

YAY!

→ No strategy can be better than this, which has ratio 9

7/15



Shells and cows

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

YAY!

1 24 8

YAY!

→ No strategy can be better than this, which has ratio 9

7/15



Shells and cows

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

YAY!

1 24 8

YAY!

→ No strategy can be better than this, which has ratio 9

7/15



Shells and cows

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

YAY!

1 24 8

YAY!

→ No strategy can be better than this, which has ratio 9

7/15



Shells and cows

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

YAY!

1 24 8

YAY!

→ No strategy can be better than this, which has ratio 9

7/15



Shells and cows

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

YAY!

1 24 8

YAY!

→ No strategy can be better than this, which has ratio 9

7/15



Shells and cows

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

YAY!

1 24 8

YAY!

→ No strategy can be better than this, which has ratio 9

7/15



Shells and cows

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

YAY!

1 24 8

YAY!

→ No strategy can be better than this, which has ratio 9

7/15



Shells and cows

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

YAY!

1

24 8

YAY!

→ No strategy can be better than this, which has ratio 9

7/15



Shells and cows

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

YAY!

1 2

4 8

YAY!

→ No strategy can be better than this, which has ratio 9

7/15



Shells and cows

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

YAY!

1 24

8

YAY!

→ No strategy can be better than this, which has ratio 9

7/15



Shells and cows

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

YAY!

1 24 8

YAY!

→ No strategy can be better than this, which has ratio 9

7/15



Shells and cows

There is a family of unit-weighted outerplanar graphs on which
no strategy can have competitive ratio < 9.

Theorem [BBCDGLLP, 2024]

YAY!

1 24 8

YAY!

→ No strategy can be better than this, which has ratio 9 7/15



Competitive ratio 9 on unweighted outerplanar graphs

There is a strategy with competitive ratio 9 for unit-weighted
outerplanar graphs.

Theorem [BBCDGLLP, 2024]

Proof Sketch
1. Manage articulation points to simplify and decompose the

graph
2. Use exponential balancing while managing chords, using

induction to iterate
Main idea: going from one side to the other without going back to
the start can be useful!

8/15



Competitive ratio 9 on unweighted outerplanar graphs

There is a strategy with competitive ratio 9 for unit-weighted
outerplanar graphs.

Theorem [BBCDGLLP, 2024]

Proof Sketch
1. Manage articulation points to simplify and decompose the

graph
2. Use exponential balancing while managing chords, using

induction to iterate
Main idea: going from one side to the other without going back to
the start can be useful!

8/15



Managing articulation points

Let F be a monotone family. If A achieves competitive ratio C
on graphs of F with no articulation point, then, the strategy:

1.
2.

achieves competitive ratio C on F .

Lemma

s ts = s1
t1 s2 t2 s3 t3 = t

= =

9/15



Managing articulation points

Let F be a monotone family. If A achieves competitive ratio C
on graphs of F with no articulation point, then, the strategy:

1. Remove all useless components
2. For every (s, t)-separator z , apply A from s to z then from

z to t
achieves competitive ratio C on F .

Lemma

s ts = s1
t1 s2 t2 s3 t3 = t

= =

9/15



Managing articulation points

Let F be a monotone family. If A achieves competitive ratio C
on graphs of F with no articulation point, then, the strategy:

1. Remove all useless components
2. For every (s, t)-separator z , apply A from s to z then from

z to t
achieves competitive ratio C on F .

Lemma

s t

s = s1
t1 s2 t2 s3 t3 = t

= =

9/15



Managing articulation points

Let F be a monotone family. If A achieves competitive ratio C
on graphs of F with no articulation point, then, the strategy:

1. Remove all useless components
2. For every (s, t)-separator z , apply A from s to z then from

z to t
achieves competitive ratio C on F .

Lemma

s t

s = s1
t1 s2 t2 s3 t3 = t

= =

9/15



Managing articulation points

Let F be a monotone family. If A achieves competitive ratio C
on graphs of F with no articulation point, then, the strategy:

1. Remove all useless components
2. For every (s, t)-separator z , apply A from s to z then from

z to t
achieves competitive ratio C on F .

Lemma

s t

s = s1
t1 s2 t2 s3 t3 = t

= =

9/15



Managing articulation points

Let F be a monotone family. If A achieves competitive ratio C
on graphs of F with no articulation point, then, the strategy:

1. Remove all useless components
2. For every (s, t)-separator z , apply A from s to z then from

z to t
achieves competitive ratio C on F .

Lemma

s t

s = s1
t1 s2 t2 s3 t3 = t

= =

9/15



Managing articulation points

Let F be a monotone family. If A achieves competitive ratio C
on graphs of F with no articulation point, then, the strategy:

1. Remove all useless components
2. For every (s, t)-separator z , apply A from s to z then from

z to t
achieves competitive ratio C on F .

Lemma

s t

s = s1
t1 s2 t2 s3 t3 = t

= =

9/15



Sides and chords

Upper side

Lower side

s

s ′

t

Vertical chord

Horizontal chord

→ When following a path, we always take open horizontal chords
and can ignore what they allow to skip
→ If one side is blocked, then, we switch to the other and can
reapply the simplification

10/15



Sides and chords

Upper side

Lower side

s

s ′

t

Vertical chord

Horizontal chord

→ When following a path, we always take open horizontal chords
and can ignore what they allow to skip
→ If one side is blocked, then, we switch to the other and can
reapply the simplification

10/15



Sides and chords

Upper side

Lower side

s

s ′

t
Vertical chord

Horizontal chord

→ When following a path, we always take open horizontal chords
and can ignore what they allow to skip
→ If one side is blocked, then, we switch to the other and can
reapply the simplification

10/15



Sides and chords

Upper side

Lower side

s

s ′

t
Vertical chord

Horizontal chord

→ When following a path, we always take open horizontal chords
and can ignore what they allow to skip

→ If one side is blocked, then, we switch to the other and can
reapply the simplification

10/15



Sides and chords

Upper side

Lower side

s

s ′

t

Vertical chord

Horizontal chord

→ When following a path, we always take open horizontal chords
and can ignore what they allow to skip
→ If one side is blocked

, then, we switch to the other and can
reapply the simplification

10/15



Sides and chords

Upper side

Lower side

s

s ′

t

Vertical chord

Horizontal chord

→ When following a path, we always take open horizontal chords
and can ignore what they allow to skip
→ If one side is blocked, then, we switch to the other and can
reapply the simplification

10/15



Exponential balancing and vertical chords

Budget = 1248 Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget = 1

248 Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget =

1

2

48 Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget =

1

2

48 Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget =

12

4

8 Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget =

12

4

8 Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget =

124

8

Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget =

124

8

Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t
u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget =

124

8

Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t
u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget =

124

8

Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget =

124

8

Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget =

124

8 Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget =

124

8 Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget =

124

8 Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget =

124

8 Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

6

7

11/15



Exponential balancing and vertical chords
Budget =

124

8 Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67

11/15



Exponential balancing and vertical chords
Budget =

124

8 Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

6

7

11/15



Exponential balancing and vertical chords
Budget =

124

8

Back budget = 7 - 4
= 3

Case 1: When catching up, a vertical chord allows us
to go further on the other side than previous budget.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2: When exploring further than previous budget, a ver-
tical chord links us to an unexplored vertex on the other side.

⇒ Go to the other side and explore back

Case 2.1: We do not reach the last explored vertex on the other side.

⇒ Shortest sv -path goes through u
⇒ Iterate from u to t

Case 2.2: We reach the last explored vertex on the other side.

⇒ Shortest su-path goes through v
⇒ Iterate from v to t

Case 2.3: u and v are at the same distance from s on their sides.

⇒ uv is just a shortcut between sides
⇒ Continue the balancing from s to t

s t

u

v

u

v

7

4

67

11/15



Proof of the ratio

s t
D

D

Ratio ≤ 5

s t
D D

D

Ratio ≤ 6

s t
D D

D

Ratio ≤ 9

update: D ← 2D

▶ Core exponential balancing loop:

ratio ≤ 9
▶ Going back within leftover budget ensures that the ratio

remains ≤ 9

12/15



Proof of the ratio

s t
D

D

Ratio ≤ 5

s t
D D

D

Ratio ≤ 6

s t
D D

D

Ratio ≤ 9

update: D ← 2D

▶ Core exponential balancing loop: ratio ≤ 9

▶ Going back within leftover budget ensures that the ratio
remains ≤ 9

12/15



Proof of the ratio

s t
D

D

Ratio ≤ 5

s t
D D

D

Ratio ≤ 6

s t
D D

D

Ratio ≤ 9

update: D ← 2D

▶ Core exponential balancing loop: ratio ≤ 9
▶ Going back within leftover budget ensures that the ratio

remains ≤ 9

12/15



Arbitrarily weighted outerplanar graphs

There is a family of weighted outerplanar graphs on which no
strategy can have constant competitive ratio.

Theorem [BBCDGLLP, 2024]

Sketch of proof
We construct Hi by induction such that no strategy can achieve
competitive ratio Ci = i + 1

2 .

H0: 1s t
Competitive ratio 1 > 1

2

13/15



Arbitrarily weighted outerplanar graphs

There is a family of weighted outerplanar graphs on which no
strategy can have constant competitive ratio.

Theorem [BBCDGLLP, 2024]

Sketch of proof
We construct Hi by induction such that no strategy can achieve
competitive ratio Ci = i + 1

2 .

H0: 1s t
Competitive ratio 1 > 1

2

13/15



Arbitrarily weighted outerplanar graphs

There is a family of weighted outerplanar graphs on which no
strategy can have constant competitive ratio.

Theorem [BBCDGLLP, 2024]

Sketch of proof
We construct Hi by induction such that no strategy can achieve
competitive ratio Ci = i + 1

2 .

H0: 1s t
Competitive ratio 1 > 1

2

13/15



Building Hi+1 from Hi

Ci

αH (1)i

αH (2)
i . . .

αH
(N

)
i

η

η
η

s = s1 tN = t

t1 = s2
t2 = s3

tN−1 = sN

▶ Strategy: either crossing st, or going down. If going down,
either ending up at t, or going back to s to cross st.

▶ Carefully choosing α and η small enough and N large enough
gives competitive ratio > Ci + 1 = Ci+1.

14/15



Building Hi+1 from Hi

Ci

αH (1)i

αH (2)
i . . .

αH
(N

)
i

η

η
η

s = s1 tN = t

t1 = s2
t2 = s3

tN−1 = sN

▶ Strategy: either crossing st, or going down. If going down,
either ending up at t, or going back to s to cross st.

▶ Carefully choosing α and η small enough and N large enough
gives competitive ratio > Ci + 1 = Ci+1.

14/15



Building Hi+1 from Hi

Ci

αH (1)i

αH (2)
i . . .

αH
(N

)
i

η

η
η

s = s1 tN = t

t1 = s2
t2 = s3

tN−1 = sN

▶ Strategy: either crossing st, or going down. If going down,
either ending up at t, or going back to s to cross st.

▶ Carefully choosing α and η small enough and N large enough
gives competitive ratio > Ci + 1 = Ci+1.

14/15



Summary

and perspectives!

Tree

Cactus

Planar tw = 2
(even unit-weighted)

Planar

Unbounded
ratio 2k + 1

Constant
ratio

3

1

Outerplanar
(unit-weighted)

Outerplanar
(arbitrarily weighted)

9

≤ 2 3
4 k + O(1)

p-outerplanar
(unit-weighted)

???

???

15/15



Summary and perspectives!

Tree

Cactus

Planar tw = 2
(even unit-weighted)

Planar

Unbounded
ratio 2k + 1

Constant
ratio

3

1

Outerplanar
(unit-weighted)

Outerplanar
(arbitrarily weighted)

9

≤ 2 3
4 k + O(1)

p-outerplanar
(unit-weighted)

???

???

15/15


