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Context: Ramsey Theory

Idea
Guarantee the existence of ordered substructures within large
chaotic structures.

For any k, there is an integer R(k) such that, if n ≥R(k), then,
every 2-edge-coloring of Kn contains a monochromatic Kk .

Ramsey’s Theorem (for 2-colorings) (1930)

Kn

Kk
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Context: extremal graph theory
Idea
Find the minimum density guaranteeing a given property, and the
densest graphs for which it does not hold.

If G of order n contains more than
(
1− 1

k
) n2

2 edges, then, G
contains a Kk+1.
The extremal graph is the balanced complete k-partite graph of
order n.

Turán’s Theorem (1941)

G

Kk+1
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Notations for the rest of the talk

Ï We consider 2-edge-colorings of Kn: E (Kn)=R ⊔B.
Ï We denote by ex(n,G) the maximum number of edges in a

G-free graph of order n.

Goal: generalizing Ramsey’s ideas and looking for unavoidable
patterns other than monochromatic copies.
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r -tonality

An (r ,b)-copy of a graph G(V ,E ) (with r +b = |E |) is a copy of
G with r edges in R and b edges in B.

Definition

⇒ By Ramsey, if n is large enough, we always have a (0, |E |)-copy
or an (|E |,0)-copy of G .

We want to guarantee the existence of an (r ,b)-copy of G
(for a given r > 0).

⇒ Need for a given density of each color class.

If, for every n large enough, there exists k(n,r) such that every
2-edge-coloring R ⊔B of Kn verifying |R |, |B| > k(n,r) contains
an (r ,b)-copy of G , then G is r -tonal.

r -tonality
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Balanceability: when r = |E |
2

A balanced copy of G(V ,E ) is an (r ,b)-copy of G with
r ∈

{⌊ |E |
2

⌋
,
⌈ |E |

2

⌉}
.

Balanced copy

Let bal(n,G) be the smallest integer, if it exists, such that every
2-edge-coloring R⊔B of Kn verifying |R |, |B| > bal(n,G) contains
a balanced copy of G .

If there is an n0 such that, for every n ≥ n0, bal(n,G) exists, then
G is balanceable and bal(n,G) is its balancing number.

Balanceability (Caro, Hansberg, Montejano, 2020)

Ramsey-type problem Extremal-type problem
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Characterization

A graph is balanceable if and only if it has both:

1. A cut crossed by half of its edges;
2. An induced subgraph containing half of its edges.

Theorem (Caro, Hansberg, Montejano, 2020)
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Proof of the characterization (1)

G is balanceable ⇒
It has to fit in those two specific colorings of Kn :

type A type B

Those two specific colorings of Kn can be balanced
(|R | = |B| = 1

2
(n
2
)
) for an infinity of values of n.
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Proof of the characterization (2)

For every t, there exists φ(n,t) ∈O(n2− 1
m(t) ) such that, if n is large

enough, then, every 2-edge-coloring of Kn verifying |R |, |B| ≥
φ(n,t) contains either a type A or a type B copy of K2t .

Theorem (Caro, Hansberg, Montejano, 2020)

Also shown (with a bound of ϵ
(n
2
)
) by Cutler & Montágh (2008)

and Fox & Sudakov (2008).

type A type B

⇒ Gives a subquadratic bound for bal(n,G)
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Proof of the characterization (3)

For every t, there exists φ(n,t) ∈O(n2− 1
m(t) ) such that, if n is large

enough, then, every 2-edge-coloring of Kn verifying |R |, |B| ≥
φ(n,t) contains either a type A or a type B copy of K2t .

Theorem (Caro, Hansberg, Montejano, 2020)

Kn Kn

Kr ,r Kr ,r

Kq Kq Kq Kq

K2q K2q

Kt Kt
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Previous results on balanceability

Ï Caro, Hansberg, Montejano (2019)
Ï bal(n,K4)= n−1 or n (depending on n mod 4)
Ï No other complete graph with an even number of edges is

balanceable!

Ï Caro, Hansberg, Montejano (2020)
Ï Trees are balanceable

For n ≥ 4k, bal(n,Tk)≤ (k −1)n
Ï For k even and n ≥max(3, k2

4 +1),
bal(n,K1,k)= bal(n,K1,k+1)=

(
k−2

2

)
n− k2

8 + k
4

Ï For n ≥ 9
32k2 + 1

4k +1,
bal(n,P4k)= bal(n,P4k+1)= (k −1)n− 1

2 (k2 −k − 1
2 )

bal(n,P4k−2)= bal(n,P4k−1)= (k −1)n− 1
2 (k2 −k)

" Pk is the path on k edges (sorry )
Ï Caro, Lauri, Zarb (2020)

Ï Balancing numbers of the graphs with at most 4 edges
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Cycles

Let k be a positive integer, and n be an integer such that
n ≥ 9

2k2+ 13
4 k + 49

32 , et ϵ ∈ {−1,1}.

Ï C4k+2 is ;
Ï C4k+ϵ is balanceable, and

bal(n,C4k+ϵ)= (k −1)n− 1
2(k2−k −1−ϵ) ;

Ï C4k is balanceable, and
(k −1)n− (k −1)2 ≤ bal(n,C4k)≤ (k −1)n+12k2+3k.

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
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Cycles C4k+2

The cycle C4k+2 is not balanceable.

Proposition

Proof by contradiction

C4k+2 has a cut containing half of its edges.

...
...2k +1

edges

Start End
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Odd cycles

Let k be a positive integer, n be an integer such that
n ≥ 9

2k2+ 13
4 k + 49

32 , et ϵ ∈ {−1,1}.

bal(n,C4k+ϵ) = bal(n,P4k+ϵ−1)

= (k −1)n− 1
2(k2−k −1−ϵ)

Proposition

Proof (for C4k+1)

Balanced P4k ⇒
2k edges of each color
We can close the cycle
which will be balanced

Balanced C4k+1 ⇒
A color with 2k +1 edges

Removing one gives
a balanced P4k

14/31
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Cycles C4k

The proof for odd cycles does not work:

Balanced P4k−1

⇒ The cycle may be

non-balanced

For n ≥ 9
2k2+ 13

4 k + 49
32 ,

(k −1)n− (k −1)2 ≤ bal(n,C4k)≤ (k −1)n+12k2+3k

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
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Cycles C4k : lower bound

For every n ≥ 4k, bal(n,C4k)≥ (k −1)n− (k −1)2.

Proposition

Proof
We build a 2-edge-coloring R ⊔B with no balanced C4k and such
that |B| ≥ |R | = (k −1)n− (k −1)2.

k −1
vertices

n−k +1
vertices

⇒ A cycle can have at most 2k −2 edges in R.
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Cycles C4k : upper bound (1)

Let k > 0 and n ≥ 9
2k2+ 13

4 k + 49
32 :

bal(n,C4k)≤ (k −1)n+12k2+3k .

Proposition

Proof by contradiction

|R |, |B| > bal(n,P4k−2) ⇒ There is a balanced P4k−2.

⇒ We close it with (wlog) a B edge

4k −1 vertices

2k −1 in R
2k in B
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Cycles C4k : upper bound (2)
Proof by contradiction (sequel)

Kn

u0

u1

u2

u3

C4k−1

X

Y

X

Y

Lemmas enforce the colors of E (X ), E (Y ) and E (X ,Y ).

X

Y

. . .

. . .

2k

2k

We cannot have |X |, |Y | ≥ k ⇒ wlog, assume |X | < kWe cannot have |X |, |Y | ≥ k ⇒ wlog, assume |X | < k

C4k−1
∪ X Y

...
...2k −12k −2

2k
−1

Consider the graph induced by (C4k+1∪X ,Y )∩R.
It contains ≥ (k −1)n edges; and ex(n,P2k−1)≤ (k −1)n [FS13] ⇒ It contains a P2k−1.It contains ≥ (k −1)n edges; and ex(n,P2k−1)≤ (k −1)n [FS13] ⇒ It contains a P2k−1.

There remain enough edges in R to have a K1,2.

We complete with edges in Y , which will be in B, and we get a balanced C4k .

⇒ Contradiction

18/31
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Circulant graphs Ck ,ℓ

Definition
Ck ,ℓ is a cycle Ck

with the uiui+ℓ chords.

u0

u1

u2

u3
u4u5

u6

u7

u8

u9

u10
u11 u12

u13

u14

u15

C16,4C16,4

Contains antiprisms and Möbius ladders.
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Circulant graphs Ck ,ℓ

Let k > 3 and ℓ ∈ {2, . . . ,k −2}. The graph Ck ,ℓ is balanceable if
and only if k is even and (k ,ℓ) ̸= (6,2).

Theorem (D., Hansberg, Ventura, 2021)

Proof in eight cases! Each case uses the characterization.
Proof of the case k = 4a, ℓ even

If, in G(V ,E ), I is an indepen-
dent set such that ∑

u∈I d(u) =
|E |
2 , then, G is balanceable.

Proposition

u0

u1

u2
u3u4u5

u6

u7

u8

u9

u10
u11 u12 u13

u14

u15
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Work in progress

Ï Kn with n(n−1)
2 odd

Common integer solutions of k(n−k)= 1
2
(n
2
)± 1

2 and(ℓ
2
)= 1

2
(n
2
)± 1

2

⇒ Explicit, but difficult to combine... found by computation:
1. n ∈ {2,3,7,11,14,38,62,79,359,43.262} ⇒ Balanceable
2. Other values of n ≤ 10765.500 ⇒ Non-balanceable

Ï 2Kn

Balanceable ⇔ n is the sum of two squares

⇒ Allows us to break graph operators (disjoint union, joint...)!
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non-trivial bounds for bal(n,G)exact value of bal(n,G)
non-trivial bounds for bal(n,G)
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n ∈ {2,3,4}

n ∈ {7,11,14,38,
62,79,359,43.262}

n ≥ 5 and
n(n−1)

2 even,
n ≤ 10765.500

[CHM, 2020], [CLZ, 2020]
[D., Hansberg, Talon,

Ventura, 2022+]
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Odd

C4k
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[D., Eslava, Hansberg,
Ventura, 2020+]
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Non-balanceable graphs

A graph is balanceable if and only if it has both:

1. A cut crossed by half of its edges;
2. An induced subgraph containing half of its edges.

Theorem (Caro, Hansberg, Montejano, 2020)

Ï C4k+2 has the induced subgraph, not the cut
Ï K5 has neither

→ Can we differentiate "levels" of non-balanceability?
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Generalized balancing number
Idea
From a 2-edge-coloring to a 2-edge-covering:

1. The edges are labeled with {r }, {b} or {r ,b}.

2. Edges labeled with {r ,b} are called bicolored; we can choose
their color.

3. Denoting the 2-edge-covering by c, R = {e | r ∈ c(e)} and
B = {e | b ∈ c(e)}.

Let bal*(n,G) be the smallest integer such that every 2-edge-
covering R ∪B of Kn verifying |R |, |B| > bal*(n,G) contains a
balanced copy of G .
bal*(n,G) is called the generalized balancing number of G .

Definition (D., Eslava, Hansberg, Ventura, 2020+)

⇒ Every graph has a generalized balancing number!
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First results

If bal(n,G) exists, then bal*(n,G)= bal(n,G).
Otherwise, 1

2
(n
2
)≤ bal*(n,G)< (n

2
)
.

Proposition

Counting bicolored edges
If |R |, |B| = 1

2
(n
2
)+b:

R \ B
1
2
(n
2
)−b

B \ R
1
2
(n
2
)−b

b

b

⇒ 2b bicolored
edges

If k bicolored edges guarantee a balanced copy of G , then
bal*(n,G)≤ 1

2
(n
2
)+⌈

k
2

⌉
−1.

Proposition
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A general upper bound

Ï H (G)=
{
H ≤G | e(H)=

⌊ e(G)
2

⌋
, H with no isolated vertex

}

For every G(V ,E ) and n ≥ |V |, we have

bal*(n,G)≤ 1
2

(
n
2

)
+

⌈ex(n,H (G))
2

⌉
.

Theorem (D., Eslava, Hansberg, Ventura, 2020+)

Proof
If there are at least ex(n,H (G))+1 bicolored edges, we can select
them, complete the copy of G , and assign the colors of the
bicolored edges to balance the copy.
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Applying the upper bound

Cycles C4k+2
Ï H (C4k+2)= linear forests of size 2k +1

Ï bal*(n,C4k+2)≤ 1
2
(n
2
)+ kn

2 +O(1) [Ning, Wang, 2020]

K5

Ï H (K5)=

For every integer n ≥ 5, ex(n,H (K5))= ex(n, {C3,C4,C5}).

Theorem (D., Eslava, Hansberg, Ventura, 2020+)

Ï bal*(n,K5)≤ 1
2
(n
2
)+ (1+ϵ) 1

4
p

2n 3
2 [Füredi, Simonovits, 2013]

→ Quality of this bound?
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Generalized balancing number of C4k+2

bal*(n,C4k+2)= 1
2
(n
2
)Theorem (D., Eslava, Hansberg, Ventura, 2020+)

Proof idea
1. Assume |R |, |B| > 1

2
(n
2
)
: there are at least 2 bicolored edges.

2. Let t ≥ 3k +1. We find a type A or type B copy of K2t .

type A type B

3. If type A copy: balanced copy of C4k+2.
4. If type B copy: wherever the bicolored edge is, we can find a

balanced copy of C4k+2.
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Lower bound for K5

Let c =
(p

2−1
2
p

2

) 5
2 . We have bal*(n,K5)≥ 1

2
(n
2
)+ (1−ϵ)cn 3

2 .

Proposition

Proof
We build a 2-edge-covering of Kn with no balanced K5.

Bicolored graph
of girth ≥ 6

Then, we prove |R |, |B| > 1
2
(n
2
)+ (1−ϵ)cn 3

2 .
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Quality of the general upper bound

Cycles C4k+2
Ï General upper bound: bal*(n,C4k+2)≤ 1

2
(n
2
)+ kn

2 +O(1)
Ï Exact value: bal*(n,C4k+2)= 1

2
(n
2
)

K5
Ï General upper bound: bal*(n,K5)≤ 1

2
(n
2
)+ (1+ϵ) 1

4
p

2

Ï Lower bound: bal*(n,K5)≥ 1
2
(n
2
)+ (1−ϵ)

(p
2−1

2
p

2

) 5
2

→ There are differences among non-balanceable graphs.
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Final words

Conclusion
Ï Balanceability results, study of bal(n,G)
Ï Introduction of bal*(n,G) to study non-balanceable graphs

Open questions
Ï Complexity
Ï More graph classes
Ï More colors
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