Balanceability

Antoine Dailly

Joint work with Laura Eslava¹, Adriana Hansberg², Alexandre Talon and Denae Ventura².

 1 IIMAS - Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas 2 Instituto de Matemáticas, UNAM Juriquilla

Context: Ramsey Theory

Idea

Guarantee the existence of ordered substructures within large chaotic structures.

Ramsey's Theorem (for 2-colorings) (1930)

For any k, there is an integer R(k) such that, if $n \ge R(k)$, then, every 2-edge-coloring of K_n contains a monochromatic K_k .

Context: extremal graph theory

Idea

Find the minimum density guaranteeing a given property, and the densest graphs for which it does not hold.

Turán's Theorem (1941) If *G* of order *n* contains more than $(1 - \frac{1}{k})\frac{n^2}{2}$ edges, then, *G* contains a K_{k+1} . The extremal graph is the balanced complete *k*-partite graph of order *n*.

Notations for the rest of the talk

- We consider 2-edge-colorings of K_n : $E(K_n) = R \sqcup B$.
- ► We denote by ex(n, G) the maximum number of edges in a G-free graph of order n.

Notations for the rest of the talk

- We consider 2-edge-colorings of K_n : $E(K_n) = R \sqcup B$.
- ► We denote by ex(n, G) the maximum number of edges in a G-free graph of order n.

Goal: generalizing Ramsey's ideas and looking for unavoidable patterns other than monochromatic copies.

Definition

An (r,b)-copy of a graph G(V,E) (with r+b=|E|) is a copy of G with r edges in R and b edges in B.

Definition

An (r, b)-copy of a graph G(V, E) (with r + b = |E|) is a copy of G with r edges in R and b edges in B.

⇒ By Ramsey, if *n* is large enough, we always have a (0, |E|)-copy or an (|E|, 0)-copy of *G*.

Definition

An (r, b)-copy of a graph G(V, E) (with r + b = |E|) is a copy of G with r edges in R and b edges in B.

⇒ By Ramsey, if *n* is large enough, we always have a (0, |E|)-copy or an (|E|, 0)-copy of *G*.

We want to guarantee the existence of an (r, b)-copy of G (for a given r > 0).

Definition

An (r, b)-copy of a graph G(V, E) (with r + b = |E|) is a copy of G with r edges in R and b edges in B.

⇒ By Ramsey, if *n* is large enough, we always have a (0, |E|)-copy or an (|E|, 0)-copy of *G*.

We want to guarantee the existence of an (r, b)-copy of G (for a given r > 0).

 \Rightarrow Need for a given density of each color class.

Definition

An (r,b)-copy of a graph G(V,E) (with r+b=|E|) is a copy of G with r edges in R and b edges in B.

⇒ By Ramsey, if *n* is large enough, we always have a (0, |E|)-copy or an (|E|, 0)-copy of *G*.

We want to guarantee the existence of an (r, b)-copy of G (for a given r > 0).

 \Rightarrow Need for a given density of each color class.

r-tonality

If, for every *n* large enough, there exists k(n,r) such that every 2-edge-coloring $R \sqcup B$ of K_n verifying |R|, |B| > k(n,r) contains an (r, b)-copy of *G*, then *G* is *r*-tonal.

Balanced copyA balanced copy of G(V, E) is an (r, b)-copy of G with $r \in \left\{ \lfloor \frac{|E|}{2} \rfloor, \lceil \frac{|E|}{2} \rceil \right\}.$

Balanced copy

A balanced copy of G(V, E) is an (r, b)-copy of G with $r \in \left\{ \left\lfloor \frac{|E|}{2} \right\rfloor, \left\lceil \frac{|E|}{2} \right\rceil \right\}.$

Balanceability (Caro, Hansberg, Montejano, 2020)

Let bal(n, G) be the smallest integer, if it exists, such that every 2-edge-coloring $R \sqcup B$ of K_n verifying |R|, |B| > bal(n, G) contains a balanced copy of G.

Balanced copy

A balanced copy of G(V, E) is an (r, b)-copy of G with $r \in \left\{ \left\lfloor \frac{|E|}{2} \right\rfloor, \left\lceil \frac{|E|}{2} \right\rceil \right\}.$

Balanceability (Caro, Hansberg, Montejano, 2020)

Let bal(n, G) be the smallest integer, if it exists, such that every 2-edge-coloring $R \sqcup B$ of K_n verifying |R|, |B| > bal(n, G) contains a balanced copy of G. If there is an n_0 such that, for every $n \ge n_0$, bal(n, G) exists, then G is balanceable

Balanced copy

A balanced copy of G(V, E) is an (r, b)-copy of G with $r \in \left\{ \left\lfloor \frac{|E|}{2} \right\rfloor, \left\lceil \frac{|E|}{2} \right\rceil \right\}.$

Balanceability (Caro, Hansberg, Montejano, 2020)

Let bal(n, G) be the smallest integer, if it exists, such that every 2-edge-coloring $R \sqcup B$ of K_n verifying |R|, |B| > bal(n, G) contains a balanced copy of G. If there is an n_0 such that, for every $n \ge n_0$, bal(n, G) exists, then

G is balanceable and bal(n, G) is its balancing number.

Balanced copy

A balanced copy of G(V, E) is an (r, b)-copy of G with $r \in \left\{ \left\lfloor \frac{|E|}{2} \right\rfloor, \left\lceil \frac{|E|}{2} \right\rceil \right\}.$

Balanceability (Caro, Hansberg, Montejano, 2020)

Let bal(n, G) be the smallest integer, if it exists, such that every 2-edge-coloring $R \sqcup B$ of K_n verifying |R|, |B| > bal(n, G) contains a balanced copy of G.

If there is an n_0 such that, for every $n \ge n_0$, bal(n, G) exists, then G is balanceable and bal(n, G) is its balancing number.

Ramsey-type problem

Extremal-type problem

Characterization

Theorem (Caro, Hansberg, Montejano, 2020)

A graph is balanceable if and only if it has both:

Characterization

Theorem (Caro, Hansberg, Montejano, 2020)

A graph is balanceable if and only if it has both: 1. A cut crossed by half of its edges;

Characterization

Theorem (Caro, Hansberg, Montejano, 2020)

A graph is balanceable if and only if it has both:

- 1. A cut crossed by half of its edges;
- 2. An induced subgraph containing half of its edges.

G is balanceable \Rightarrow

It has to fit in those two specific colorings of K_n :

G is balanceable \Rightarrow

It has to fit in those two specific colorings of K_n :

G is balanceable \Rightarrow

It has to fit in those two specific colorings of K_n :

G is balanceable \Rightarrow

It has to fit in those two specific colorings of K_n :

Those two specific colorings of K_n can be balanced $(|R| = |B| = \frac{1}{2} \binom{n}{2})$ for an infinity of values of n.

Theorem (Caro, Hansberg, Montejano, 2020)

For every *t*, there exists $\phi(n,t) \in \mathcal{O}(n^{2-\frac{1}{m(t)}})$ such that, if *n* is large enough, then, every 2-edge-coloring of K_n verifying $|R|, |B| \ge \phi(n,t)$ contains either a type A or a type B copy of K_{2t} .

Also shown (with a bound of $\epsilon\binom{n}{2}$) by Cutler & Montágh (2008) and Fox & Sudakov (2008).

Theorem (Caro, Hansberg, Montejano, 2020)

For every *t*, there exists $\phi(n,t) \in \mathcal{O}(n^{2-\frac{1}{m(t)}})$ such that, if *n* is large enough, then, every 2-edge-coloring of K_n verifying $|R|, |B| \ge \phi(n,t)$ contains either a type A or a type B copy of K_{2t} .

Also shown (with a bound of $\epsilon\binom{n}{2}$) by Cutler & Montágh (2008) and Fox & Sudakov (2008).

 \Rightarrow Gives a subquadratic bound for bal(*n*, *G*)

Theorem (Caro, Hansberg, Montejano, 2020)

Previous results on balanceability

- ► Caro, Hansberg, Montejano (2019)
 - ► $bal(n, K_4) = n 1$ or n (depending on $n \mod 4$)
 - No other complete graph with an even number of edges is balanceable!
Previous results on balanceability

- ► Caro, Hansberg, Montejano (2019)
 - ▶ $bal(n, K_4) = n 1$ or n (depending on $n \mod 4$)
 - No other complete graph with an even number of edges is balanceable!
- ► Caro, Hansberg, Montejano (2020)
 - ► Trees are balanceable For $n \ge 4k$, bal $(n, T_k) \le (k-1)n$
 - For k even and $n \ge \max(3, \frac{k^2}{4} + 1)$, $\operatorname{bal}(n, K_{1,k}) = \operatorname{bal}(n, K_{1,k+1}) = \left(\frac{k-2}{2}\right)n - \frac{k^2}{8} + \frac{k}{4}$

For
$$n \ge \frac{9}{32}k^2 + \frac{1}{4}k + 1$$
,
 $bal(n, P_{4k}) = bal(n, P_{4k+1}) = (k-1)n - \frac{1}{2}(k^2 - k - \frac{1}{2})$
 $bal(n, P_{4k-2}) = bal(n, P_{4k-1}) = (k-1)n - \frac{1}{2}(k^2 - k)$
 $\land P_k$ is the path on k edges (sorry \textcircled{C})

Previous results on balanceability

- ► Caro, Hansberg, Montejano (2019)
 - ▶ $bal(n, K_4) = n 1$ or n (depending on $n \mod 4$)
 - No other complete graph with an even number of edges is balanceable!
- ► Caro, Hansberg, Montejano (2020)
 - ► Trees are balanceable For $n \ge 4k$, bal $(n, T_k) \le (k-1)n$
 - ► For k even and $n \ge \max(3, \frac{k^2}{4} + 1)$, bal $(n, K_{1,k}) = bal(n, K_{1,k+1}) = \left(\frac{k-2}{2}\right)n - \frac{k^2}{8} + \frac{k}{4}$
 - ► For $n \ge \frac{9}{32}k^2 + \frac{1}{4}k + 1$, $bal(n, P_{4k}) = bal(n, P_{4k+1}) = (k-1)n - \frac{1}{2}(k^2 - k - \frac{1}{2})$ $bal(n, P_{4k-2}) = bal(n, P_{4k-1}) = (k-1)n - \frac{1}{2}(k^2 - k)$ $\land P_k$ is the path on k edges (sorry S)
- ► Caro, Lauri, Zarb (2020)

Balancing numbers of the graphs with at most 4 edges

Theorem (D., Eslava, Hansberg, Ventura, 2020+)

- C_{4k+2} is not balanceable ;
- $C_{4k+\epsilon}$ is balanceable
- C_{4k} is balanceable

Theorem (D., Eslava, Hansberg, Ventura, 2020+)

- C_{4k+2} is not balanceable ;
- ► $C_{4k+\epsilon}$ is balanceable, and bal $(n, C_{4k+\epsilon}) = (k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$;
- C_{4k} is balanceable

Theorem (D., Eslava, Hansberg, Ventura, 2020+)

- C_{4k+2} is not balanceable ;
- ► $C_{4k+\epsilon}$ is balanceable, and bal $(n, C_{4k+\epsilon}) = (k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$;

•
$$C_{4k}$$
 is balanceable, and
 $(k-1)n - (k-1)^2 \le bal(n, C_{4k}) \le (k-1)n + 12k^2 + 3k.$

Proposition

The cycle C_{4k+2} is not balanceable.

Proof by contradiction

Proposition

The cycle C_{4k+2} is not balanceable.

Proof by contradiction

 C_{4k+2} has a cut containing half of its edges.

Proposition

The cycle C_{4k+2} is not balanceable.

Proof by contradiction

 C_{4k+2} has a cut containing half of its edges.

Proposition

Let k be a positive integer, n be an integer such that $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$. bal $(n, C_{4k+\epsilon})$ = bal $(n, P_{4k+\epsilon-1})$ = $(k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$

Proposition

Let k be a positive integer, n be an integer such that $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$
$$= (k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$$

Proof (for C_{4k+1})

Balanced $P_{4k} \Rightarrow$ 2k edges of each color

Proposition

Let k be a positive integer, n be an integer such that $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$
$$= (k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$$

Proof (for C_{4k+1})

Balanced $P_{4k} \Rightarrow$ 2k edges of each color

Proposition

Let k be a positive integer, n be an integer such that $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$
$$= (k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$$

Proof (for C_{4k+1})

Balanced $P_{4k} \Rightarrow$ 2k edges of each color

We can close the cycle which will be balanced

Proposition

Let k be a positive integer, n be an integer such that $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$
$$= (k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$$

Proof (for C_{4k+1})

Balanced $C_{4k+1} \Rightarrow$ A color with 2k+1 edges

Proposition

Let k be a positive integer, n be an integer such that $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$
$$= (k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$$

Proof (for C_{4k+1})

Balanced $C_{4k+1} \Rightarrow$ A color with 2k+1 edges

Proposition

Let k be a positive integer, n be an integer such that $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$, et $\epsilon \in \{-1, 1\}$.

$$bal(n, C_{4k+\epsilon}) = bal(n, P_{4k+\epsilon-1})$$
$$= (k-1)n - \frac{1}{2}(k^2 - k - 1 - \epsilon)$$

Proof (for C_{4k+1})

 $\begin{array}{l} \text{Balanced } C_{4k+1} \Rightarrow \\ \text{A color with } 2k+1 \text{ edges} \\ \text{Removing one gives} \\ \text{a balanced } P_{4k} \end{array}$

The proof for odd cycles does not work:

The proof for odd cycles does not work:

Balanced P_{4k-1}

The proof for odd cycles does not work:

Balanced P_{4k-1} \Rightarrow The cycle may be non-balanced

The proof for odd cycles does not work:

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
For
$$n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$$
,
 $(k-1)n - (k-1)^2 \le bal(n, C_{4k}) \le (k-1)n + 12k^2 + 3k$

Proposition

For every $n \ge 4k$, $bal(n, C_{4k}) \ge (k-1)n - (k-1)^2$.

Proposition

For every $n \ge 4k$, $bal(n, C_{4k}) \ge (k-1)n - (k-1)^2$.

Proof

We build a 2-edge-coloring $R \sqcup B$ with no balanced C_{4k} and such that $|B| \ge |R| = (k-1)n - (k-1)^2$.

Proposition

For every
$$n \ge 4k$$
, $bal(n, C_{4k}) \ge (k-1)n - (k-1)^2$.

Proof

We build a 2-edge-coloring $R \sqcup B$ with no balanced C_{4k} and such that $|B| \ge |R| = (k-1)n - (k-1)^2$.

Proposition

For every
$$n \ge 4k$$
, $bal(n, C_{4k}) \ge (k-1)n - (k-1)^2$.

Proof

We build a 2-edge-coloring $R \sqcup B$ with no balanced C_{4k} and such that $|B| \ge |R| = (k-1)n - (k-1)^2$.

 \Rightarrow A cycle can have at most 2k-2 edges in *R*.

Cycles C_{4k} : upper bound (1)

Proof by contradiction

Cycles C_{4k} : upper bound (1)

Proposition
Let
$$k > 0$$
 and $n \ge \frac{9}{2}k^2 + \frac{13}{4}k + \frac{49}{32}$:
bal $(n, C_{4k}) \le (k-1)n + 12k^2 + 3k$.

Proof by contradiction $|R|, |B| > bal(n, P_{4k-2}) \Rightarrow$ There is a balanced P_{4k-2} .

$$4k-1$$
 vertices
 $O-- O-O$

Cycles C_{4k} : upper bound (1)

Proof by contradiction

- $|R|, |B| > bal(n, P_{4k-2}) \Rightarrow$ There is a balanced P_{4k-2} .
 - \Rightarrow We close it with (wlog) a *B* edge

$$\underbrace{4k-1 \text{ vertices}}_{\mathbf{O}_{----}} \left. \begin{array}{c} 2k-1 \text{ in } R\\ 2k \text{ in } B \end{array} \right.$$

Lemmas enforce the colors of E(X), E(Y) and E(X, Y).

We cannot have $|X|, |Y| \ge k$

We cannot have $|X|, |Y| \ge k \Rightarrow$ wlog, assume |X| < k

Consider the graph induced by $(C_{4k+1} \cup X, Y) \cap \mathbb{R}$.

Consider the graph induced by $(C_{4k+1} \cup X, Y) \cap \mathbb{R}$.

It contains $\geq (k-1)n$ edges; and $\exp(n, P_{2k-1}) \leq (k-1)n$ [FS13]
Cycles C_{4k} : upper bound (2) Proof by contradiction (sequel)

Consider the graph induced by $(C_{4k+1} \cup X, Y) \cap \mathbb{R}$.

It contains $\geq (k-1)n$ edges; and $\exp(n, P_{2k-1}) \leq (k-1)n$ [FS13] \Rightarrow It contains a P_{2k-1} .

Cycles C_{4k} : upper bound (2) Proof by contradiction (sequel)

Consider the graph induced by $(C_{4k+1} \cup X, Y) \cap R$.

It contains $\ge (k-1)n$ edges; and $ex(n, P_{2k-1}) \le (k-1)n$ [FS13] \Rightarrow It contains a P_{2k-1} . There remain enough edges in R to have a $K_{1,2}$.

Cycles C_{4k} : upper bound (2) Proof by contradiction (sequel)

Consider the graph induced by $(C_{4k+1} \cup X, Y) \cap R$.

It contains $\geq (k-1)n$ edges; and $\exp(n, P_{2k-1}) \leq (k-1)n$ [FS13] \Rightarrow It contains a P_{2k-1} .

There remain enough edges in R to have a $K_{1,2}$.

We complete with edges in Y, which will be in B, and we get a balanced C_{4k} .

 \Rightarrow Contradiction

$\frac{\text{Definition}}{C_{k,\ell} \text{ is a cycle } C_k}$

Definition

 $C_{k,\ell}$ is a cycle C_k with the $u_i u_{i+\ell}$ chords.

Definition

 $C_{k,\ell}$ is a cycle C_k with the $u_i u_{i+\ell}$ chords.

Contains antiprisms and Möbius ladders.

Theorem (D., Hansberg, Ventura, 2021)

Let k > 3 and $\ell \in \{2, ..., k-2\}$. The graph $C_{k,\ell}$ is balanceable if and only if k is even and $(k, \ell) \neq (6, 2)$.

Theorem (D., Hansberg, Ventura, 2021)

Let k > 3 and $\ell \in \{2, ..., k-2\}$. The graph $C_{k,\ell}$ is balanceable if and only if k is even and $(k, \ell) \neq (6, 2)$.

Proof in eight cases! Each case uses the characterization.

Theorem (D., Hansberg, Ventura, 2021)

Let k > 3 and $\ell \in \{2, ..., k-2\}$. The graph $C_{k,\ell}$ is balanceable if and only if k is even and $(k, \ell) \neq (6, 2)$.

Proof in eight cases! Each case uses the characterization.

Theorem (D., Hansberg, Ventura, 2021)

Let k > 3 and $\ell \in \{2, ..., k-2\}$. The graph $C_{k,\ell}$ is balanceable if and only if k is even and $(k, \ell) \neq (6, 2)$.

Proof in eight cases! Each case uses the characterization.

Proof of the case k = 4a, ℓ even

Proposition

If, in G(V, E), I is an independent set such that $\sum_{u \in I} d(u) = \frac{|E|}{2}$, then, G is balanceable.

Theorem (D., Hansberg, Ventura, 2021)

Let k > 3 and $\ell \in \{2, ..., k-2\}$. The graph $C_{k,\ell}$ is balanceable if and only if k is even and $(k, \ell) \neq (6, 2)$.

Proof in eight cases! Each case uses the characterization.

Theorem (D., Hansberg, Ventura, 2021)

Let k > 3 and $\ell \in \{2, ..., k-2\}$. The graph $C_{k,\ell}$ is balanceable if and only if k is even and $(k, \ell) \neq (6, 2)$.

Proof in eight cases! Each case uses the characterization.

Theorem (D., Hansberg, Ventura, 2021)

Let k > 3 and $\ell \in \{2, ..., k-2\}$. The graph $C_{k,\ell}$ is balanceable if and only if k is even and $(k, \ell) \neq (6, 2)$.

Proof in eight cases! Each case uses the characterization.

► K_n with $\frac{n(n-1)}{2}$ odd Common integer solutions of $k(n-k) = \frac{1}{2} \binom{n}{2} \pm \frac{1}{2}$ and $\binom{\ell}{2} = \frac{1}{2} \binom{n}{2} \pm \frac{1}{2}$

- ► K_n with $\frac{n(n-1)}{2}$ odd Common integer solutions of $k(n-k) = \frac{1}{2} \binom{n}{2} \pm \frac{1}{2}$ and $\binom{\ell}{2} = \frac{1}{2} \binom{n}{2} \pm \frac{1}{2}$
 - \Rightarrow Explicit, but difficult to combine... found by computation:
 - 1. $n \in \{2, 3, 7, 11, 14, 38, 62, 79, 359, 43.262\} \Rightarrow$ Balanceable
 - 2. Other values of $n \le 10^{765.500} \Rightarrow$ Non-balanceable

- ► K_n with $\frac{n(n-1)}{2}$ odd Common integer solutions of $k(n-k) = \frac{1}{2} \binom{n}{2} \pm \frac{1}{2}$ and $\binom{\ell}{2} = \frac{1}{2} \binom{n}{2} \pm \frac{1}{2}$
 - \Rightarrow Explicit, but difficult to combine... found by computation:
 - 1. $n \in \{2, 3, 7, 11, 14, 38, 62, 79, 359, 43.262\} \Rightarrow$ Balanceable
 - 2. Other values of $n \le 10^{765.500} \Rightarrow$ Non-balanceable

- ► K_n with $\frac{n(n-1)}{2}$ odd Common integer solutions of $k(n-k) = \frac{1}{2} \binom{n}{2} \pm \frac{1}{2}$ and $\binom{\ell}{2} = \frac{1}{2} \binom{n}{2} \pm \frac{1}{2}$
 - \Rightarrow Explicit, but difficult to combine... found by computation:
 - 1. $n \in \{2, 3, 7, 11, 14, 38, 62, 79, 359, 43.262\} \Rightarrow$ Balanceable
 - 2. Other values of $n \le 10^{765.500} \Rightarrow$ Non-balanceable
- ► 2K_n

Balanceable \Leftrightarrow *n* is the sum of two squares

- K_n with n(n-1)/2 odd Common integer solutions of k(n-k) = 1/2 (n/2) ± 1/2 and (^ℓ/₂) = 1/2 (n/2) ± 1/2 ⇒ Explicit, but difficult to combine... found by computation:
 - 1. $n \in \{2, 3, 7, 11, 14, 38, 62, 79, 359, 43, 262\} \Rightarrow Balanceable$
 - 2. Other values of $n \le 10^{765.500} \Rightarrow$ Non-balanceable

► 2K_n

Balanceable \Leftrightarrow *n* is the sum of two squares

 \Rightarrow Allows us to break graph operators (disjoint union, joint...)!

Summary

Summary

Summary

Non-balanceable graphs

Theorem (Caro, Hansberg, Montejano, 2020)

A graph is balanceable if and only if it has both:

- C_{4k+2} has the induced subgraph, not the cut
- ► K₅ has neither

Non-balanceable graphs

Theorem (Caro, Hansberg, Montejano, 2020)

A graph is balanceable if and only if it has both: 1. A cut crossed by half of its edges;

- C_{4k+2} has the induced subgraph, not the cut
- ► K₅ has neither

 \rightarrow Can we differentiate "levels" of non-balanceability?

Non-balanceable graphs

Theorem (Caro, Hansberg, Montejano, 2020)

A graph is balanceable if and only if it has both:

1. A cut crossed by half of its edges;

2. An induced subgraph containing half of its edges.

- C_{4k+2} has the induced subgraph, not the cut
- ► K₅ has neither

 \rightarrow Can we differentiate "levels" of non-balanceability?

Idea

From a 2-edge-coloring to a 2-edge-covering:

Idea

From a 2-edge-coloring to a 2-edge-covering:

1. The edges are labeled with $\{r\}$, $\{b\}$ or $\{r, b\}$.

Idea

From a 2-edge-coloring to a 2-edge-covering:

- 1. The edges are labeled with $\{r\}$, $\{b\}$ or $\{r, b\}$.
- 2. Edges labeled with {*r*, *b*} are called bicolored; we can choose their color.

Idea

From a 2-edge-coloring to a 2-edge-covering:

- 1. The edges are labeled with $\{r\}$, $\{b\}$ or $\{r, b\}$.
- 2. Edges labeled with {*r*, *b*} are called bicolored; we can choose their color.
- 3. Denoting the 2-edge-covering by $c, R = \{e \mid r \in c(e)\}$ and $B = \{e \mid b \in c(e)\}.$

Idea

From a 2-edge-coloring to a 2-edge-covering:

- 1. The edges are labeled with $\{r\}$, $\{b\}$ or $\{r, b\}$.
- 2. Edges labeled with {*r*, *b*} are called bicolored; we can choose their color.
- 3. Denoting the 2-edge-covering by $c, R = \{e \mid r \in c(e)\}$ and $B = \{e \mid b \in c(e)\}.$

Definition (D., Eslava, Hansberg, Ventura, 2020+)

Let $bal^*(n, G)$ be the smallest integer such that every 2-edgecovering $R \cup B$ of K_n verifying $|R|, |B| > bal^*(n, G)$ contains a balanced copy of G. $bal^*(n, G)$ is called the generalized balancing number of G.

Idea

From a 2-edge-coloring to a 2-edge-covering:

- 1. The edges are labeled with $\{r\}$, $\{b\}$ or $\{r, b\}$.
- 2. Edges labeled with {*r*, *b*} are called bicolored; we can choose their color.
- 3. Denoting the 2-edge-covering by $c, R = \{e \mid r \in c(e)\}$ and $B = \{e \mid b \in c(e)\}.$

Definition (D., Eslava, Hansberg, Ventura, 2020+)

Let $bal^*(n, G)$ be the smallest integer such that every 2-edgecovering $R \cup B$ of K_n verifying $|R|, |B| > bal^*(n, G)$ contains a balanced copy of G.

 $bal^*(n, G)$ is called the generalized balancing number of G.

 \Rightarrow Every graph has a generalized balancing number!

Proposition

If bal(n, G) exists, then $bal^*(n, G) = bal(n, G)$. Otherwise, $\frac{1}{2} \binom{n}{2} \le bal^*(n, G) < \binom{n}{2}$.

Proposition

If bal(n, G) exists, then $bal^*(n, G) = bal(n, G)$. Otherwise, $\frac{1}{2} \binom{n}{2} \le bal^*(n, G) < \binom{n}{2}$.

Counting bicolored edges If $|R|, |B| = \frac{1}{2} \binom{n}{2} + b$:

$$\begin{array}{c} R \setminus B & -b \\ \frac{1}{2} \binom{n}{2} - b & B \setminus R \\ b & -\frac{1}{2} \binom{n}{2} - b \end{array}$$

Proposition

If bal(n, G) exists, then $bal^*(n, G) = bal(n, G)$. Otherwise, $\frac{1}{2} \binom{n}{2} \le bal^*(n, G) < \binom{n}{2}$.

Counting bicolored edges If $|R|, |B| = \frac{1}{2} \binom{n}{2} + b$:

 $\Rightarrow 2b$ bicolored edges

Proposition

If bal(n, G) exists, then $bal^*(n, G) = bal(n, G)$. Otherwise, $\frac{1}{2} \binom{n}{2} \le bal^*(n, G) < \binom{n}{2}$.

Counting bicolored edges If $|R|, |B| = \frac{1}{2} \binom{n}{2} + b$:

$$\begin{array}{c|c} R \setminus B & b \\ \hline \frac{1}{2} \binom{n}{2} - b & B \setminus R \\ b & -\frac{1}{2} \binom{n}{2} - b \end{array} \Rightarrow \begin{array}{c} 2b \text{ bicolored} \\ edges \end{array}$$

Proposition

If k bicolored edges guarantee a balanced copy of G, then $bal^*(n, G) \leq \frac{1}{2} \binom{n}{2} + \left\lceil \frac{k}{2} \right\rceil - 1.$

A general upper bound

►
$$\mathcal{H}(G) = \left\{ H \le G \mid e(H) = \left\lfloor \frac{e(G)}{2} \right\rfloor, H \text{ with no isolated vertex} \right\}$$
A general upper bound

►
$$\mathcal{H}(G) = \left\{ H \le G \mid e(H) = \left\lfloor \frac{e(G)}{2} \right\rfloor, H \text{ with no isolated vertex} \right\}$$

Theorem (D., Eslava, Hansberg, Ventura, 2020+)

For every G(V, E) and $n \ge |V|$, we have

$$\mathsf{bal}^*(n,G) \leq \frac{1}{2} \binom{n}{2} + \left\lceil \frac{\mathsf{ex}(n,\mathscr{H}(G))}{2} \right\rceil.$$

A general upper bound

►
$$\mathcal{H}(G) = \left\{ H \le G \mid e(H) = \left\lfloor \frac{e(G)}{2} \right\rfloor, H \text{ with no isolated vertex} \right\}$$

Theorem (D., Eslava, Hansberg, Ventura, 2020+)

For every G(V, E) and $n \ge |V|$, we have

$$\mathsf{bal}^*(n,G) \leq \frac{1}{2} \binom{n}{2} + \left\lceil \frac{\mathsf{ex}(n,\mathcal{H}(G))}{2} \right\rceil$$

Proof

If there are at least $ex(n, \mathcal{H}(G)) + 1$ bicolored edges, we can select them, complete the copy of G, and assign the colors of the bicolored edges to balance the copy.

Cycles C_{4k+2}

• $\mathcal{H}(C_{4k+2}) = \text{ linear forests of size } 2k+1$

Cycles C_{4k+2}

- $\mathcal{H}(C_{4k+2}) = \text{ linear forests of size } 2k+1$
- ▶ bal* $(n, C_{4k+2}) \le \frac{1}{2} \binom{n}{2} + \frac{kn}{2} + \mathcal{O}(1)$ [Ning, Wang, 2020]

Cycles C_{4k+2}

- $\mathcal{H}(C_{4k+2}) = \text{ linear forests of size } 2k+1$
- ► bal* $(n, C_{4k+2}) \le \frac{1}{2} \binom{n}{2} + \frac{kn}{2} + \mathcal{O}(1)$ [Ning, Wang, 2020]

Cycles C_{4k+2}

- $\mathcal{H}(C_{4k+2}) =$ linear forests of size 2k+1
- ► bal* $(n, C_{4k+2}) \le \frac{1}{2} \binom{n}{2} + \frac{kn}{2} + \mathcal{O}(1)$ [Ning, Wang, 2020]

Cycles C_{4k+2}

- $\mathcal{H}(C_{4k+2}) =$ linear forests of size 2k+1
- ► bal* $(n, C_{4k+2}) \le \frac{1}{2} \binom{n}{2} + \frac{kn}{2} + \mathcal{O}(1)$ [Ning, Wang, 2020]

► bal*
$$(n, \mathcal{K}_5) \leq \frac{1}{2} \binom{n}{2} + (1 + \epsilon) \frac{1}{4\sqrt{2}} n^{\frac{3}{2}}$$
 [Füredi, Simonovits, 2013]

Cycles C_{4k+2}

- $\mathcal{H}(C_{4k+2}) =$ linear forests of size 2k+1
- ► bal* $(n, C_{4k+2}) \le \frac{1}{2} \binom{n}{2} + \frac{kn}{2} + \mathcal{O}(1)$ [Ning, Wang, 2020]

► bal*
$$(n, K_5) \leq \frac{1}{2} {n \choose 2} + (1 + \epsilon) \frac{1}{4\sqrt{2}} n^{\frac{3}{2}}$$
 [Füredi, Simonovits, 2013]

 \rightarrow Quality of this bound?

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
bal*
$$(n, C_{4k+2}) = \frac{1}{2} \binom{n}{2}$$

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
bal*
$$(n, C_{4k+2}) = \frac{1}{2} \binom{n}{2}$$

Proof idea

1. Assume $|R|, |B| > \frac{1}{2} \binom{n}{2}$: there are at least 2 bicolored edges.

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
bal*
$$(n, C_{4k+2}) = \frac{1}{2} \binom{n}{2}$$

Proof idea

- 1. Assume $|R|, |B| > \frac{1}{2} \binom{n}{2}$: there are at least 2 bicolored edges.
- 2. Let $t \ge 3k + 1$. We find a type A or type B copy of K_{2t} .

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
bal*
$$(n, C_{4k+2}) = \frac{1}{2} \binom{n}{2}$$

Proof idea

- 1. Assume $|R|, |B| > \frac{1}{2} \binom{n}{2}$: there are at least 2 bicolored edges.
- 2. Let $t \ge 3k + 1$. We find a type A or type B copy of K_{2t} .

3. If type A copy: balanced copy of C_{4k+2} .

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
bal*
$$(n, C_{4k+2}) = \frac{1}{2} \binom{n}{2}$$

Proof idea

- 1. Assume $|R|, |B| > \frac{1}{2} \binom{n}{2}$: there are at least 2 bicolored edges.
- 2. Let $t \ge 3k + 1$. We find a type A or type B copy of K_{2t} .

- 3. If type A copy: balanced copy of C_{4k+2} .
- If type B copy: wherever the bicolored edge is, we can find a balanced copy of C_{4k+2}.

Proposition
Let
$$c = \left(\frac{\sqrt{2}-1}{2\sqrt{2}}\right)^{\frac{5}{2}}$$
. We have bal* $(n, K_5) \ge \frac{1}{2}{n \choose 2} + (1-\epsilon)cn^{\frac{3}{2}}$.

Proposition
Let
$$c = \left(\frac{\sqrt{2}-1}{2\sqrt{2}}\right)^{\frac{5}{2}}$$
. We have $bal^*(n, K_5) \ge \frac{1}{2}\binom{n}{2} + (1-\epsilon)cn^{\frac{3}{2}}$.

Proof

We build a 2-edge-covering of K_n with no balanced K_5 .

Proposition
Let
$$c = \left(\frac{\sqrt{2}-1}{2\sqrt{2}}\right)^{\frac{5}{2}}$$
. We have $bal^*(n, K_5) \ge \frac{1}{2}{n \choose 2} + (1-\epsilon)cn^{\frac{3}{2}}$.

Proof

We build a 2-edge-covering of K_n with no balanced K_5 .

Proposition
Let
$$c = \left(\frac{\sqrt{2}-1}{2\sqrt{2}}\right)^{\frac{5}{2}}$$
. We have $bal^*(n, K_5) \ge \frac{1}{2}\binom{n}{2} + (1-\epsilon)cn^{\frac{3}{2}}$.

Proof

We build a 2-edge-covering of K_n with no balanced K_5 .

Proposition
Let
$$c = \left(\frac{\sqrt{2}-1}{2\sqrt{2}}\right)^{\frac{5}{2}}$$
. We have $bal^*(n, K_5) \ge \frac{1}{2}\binom{n}{2} + (1-\epsilon)cn^{\frac{3}{2}}$.

Proof

We build a 2-edge-covering of K_n with no balanced K_5 .

Then, we prove $|R|, |B| > \frac{1}{2} \binom{n}{2} + (1-\epsilon) c n^{\frac{3}{2}}$.

Cycles C_{4k+2}

- General upper bound: bal* $(n, C_{4k+2}) \leq \frac{1}{2} {n \choose 2} + \frac{kn}{2} + \mathcal{O}(1)$
- Exact value: $bal^*(n, C_{4k+2}) = \frac{1}{2} \binom{n}{2}$

Cycles C_{4k+2}

- General upper bound: bal* $(n, C_{4k+2}) \le \frac{1}{2} \binom{n}{2} + \frac{kn}{2} + \mathcal{O}(1)$
- Exact value: $bal^*(n, C_{4k+2}) = \frac{1}{2} \binom{n}{2}$

K_5

- ► General upper bound: bal* $(n, K_5) \le \frac{1}{2} \binom{n}{2} + (1+\epsilon) \frac{1}{4\sqrt{2}} n^{\frac{3}{2}}$
- Lower bound: bal* $(n, K_5) \ge \frac{1}{2} \binom{n}{2} + (1 \epsilon) \left(\frac{\sqrt{2} 1}{2\sqrt{2}}\right)^{\frac{5}{2}} n^{\frac{3}{2}}$

Cycles C_{4k+2}

- General upper bound: bal* $(n, C_{4k+2}) \leq \frac{1}{2} {n \choose 2} + \frac{kn}{2} + \mathcal{O}(1)$
- Exact value: $bal^*(n, C_{4k+2}) = \frac{1}{2} \binom{n}{2}$

K_5

- ► General upper bound: bal* $(n, K_5) \le \frac{1}{2} \binom{n}{2} + (1+\epsilon) \frac{1}{4\sqrt{2}} n^{\frac{3}{2}}$
- Lower bound: bal* $(n, K_5) \ge \frac{1}{2} {n \choose 2} + (1 \epsilon) \left(\frac{\sqrt{2} 1}{2\sqrt{2}}\right)^{\frac{5}{2}} n^{\frac{3}{2}}$

Cycles C_{4k+2}

- General upper bound: bal* $(n, C_{4k+2}) \leq \frac{1}{2} {n \choose 2} + \frac{kn}{2} + \mathcal{O}(1)$
- Exact value: $bal^*(n, C_{4k+2}) = \frac{1}{2} \binom{n}{2}$

K_5

- General upper bound: bal* $(n, K_5) \leq \frac{1}{2} {n \choose 2} + (1+\epsilon) \frac{1}{4\sqrt{2}} n^{\frac{3}{2}}$
- Lower bound: bal* $(n, K_5) \ge \frac{1}{2} \binom{n}{2} + (1 \epsilon) \left(\frac{\sqrt{2} 1}{2\sqrt{2}}\right)^{\frac{5}{2}} n^{\frac{3}{2}}$

 \rightarrow There are differences among non-balanceable graphs.

Final words

Conclusion

- ► Balanceability results, study of bal(*n*, *G*)
- Introduction of $bal^*(n, G)$ to study non-balanceable graphs

Final words

Conclusion

- ► Balanceability results, study of bal(*n*, *G*)
- Introduction of $bal^*(n, G)$ to study non-balanceable graphs

Open questions

- ► Complexity
- More graph classes
- More colors

Final words

Conclusion

- ► Balanceability results, study of bal(*n*, *G*)
- Introduction of $bal^*(n, G)$ to study non-balanceable graphs

Open questions

- ► Complexity
- More graph classes
- More colors

