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Context: Ramsey Theory

ldea
Guarantee the existence of ordered substructures within large
chaotic structures.

Ramsey’s Theorem (for 2-colorings) (1930)]

For any k, there is an integer R(k) such that, if n= R(k), then,
every 2-edge-coloring of K), contains a monochromatic Kj.

Kn
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Context: extremal graph theory

Idea
Find the minimum density guaranteeing a given property, and the
densest graphs for which it does not hold.

Turan’s Theorem (1941)]

If G of order n contains more than (1—%)%2 edges, then, G
contains a Kj,1.

The extremal graph is the balanced complete k-partite graph of
order n.
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Notations for the rest of the talk

» We consider 2-edge-colorings of K,: E(K,)=RuB.

> We denote by ex(n, G) the maximum number of edges in a
G-free graph of order n.
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Notations for the rest of the talk

> We consider 2-edge-colorings of K,: E(K,)=FRuB.

> We denote by ex(n, G) the maximum number of edges in a
G-free graph of order n.

Goal: generalizing Ramsey's ideas and looking for unavoidable
patterns other than monochromatic copies.
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r-tonality

Definition

An (r,b)-copy of a graph G(V,E) (with r+b=|E|) is a copy of
G with r edges in R and b edges in B.
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= By Ramsey, if n is large enough, we always have a (0,|E|)-copy
or an (|E|,0)-copy of G.
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r-tonality

Definition

An (r,b)-copy of a graph G(V,E) (with r+b=|E|) is a copy of
G with r edges in R and b edges in B.

= By Ramsey, if n is large enough, we always have a (0,|E|)-copy
or an (|E|,0)-copy of G.

We want to guarantee the existence of an (r,b)-copy of G
(for a given r>0).
= Need for a given density of each color class.

r-tonality

If, for every n large enough, there exists k(n,r) such that every
2-edge-coloring Ru B of K, verifying |R|,|B| > k(n,r) contains
an (r,b)-copy of G, then G is r-tonal.

5/31



|E]

Balanceability: when r = =

Balanced copy]
A balanced copy of G(V,E) is an (r,b)-copy of G with

|7

6/31



|E]

Balanceability: when r = =

Balanced copy]
A balanced copy of G(V,E) is an (r,b)-copy of G with

refl=] [#]}

,_[Balanceability (Caro, Hansberg, Montejano, 2020)]
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Balanced copy]
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,_[Balanceability (Caro, Hansberg, Montejano, 2020)]

|\

Let bal(n, G) be the smallest integer, if it exists, such that every
2-edge-coloring Ru B of K, verifying |R|,|1B| > bal(n, G) contains
a balanced copy of G.

If there is an ng such that, for every n= ng, bal(n, G) exists, then
G is balanceable and bal(n, G) is its balancing number.
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Balanceability: when r = =

Balanced copy]
A balanced copy of G(V,E) is an (r,b)-copy of G with

ret[2 ][]}

,_[Balanceability (Caro, Hansberg, Montejano, 2020)]

Let bal(n, G) be the smallest integer, if it exists, such that every
2-edge-coloring Ru B of K, verifying |R|,|1B| > bal(n, G) contains
a balanced copy of G.

If there is an ng such that, for every n= ng, bal(n, G) exists, then
G is balanceaple and bal(n, G) is its balancing number.

|\ J

N

Ramsey-type problem Extremal-type problem

6/31



Characterization

Theorem (Caro, Hansberg, Montejano, 2020)]

A graph is balanceable if and only if it has both:
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A graph is balanceable if and only if it has both:
1. A cut crossed by half of its edges;
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Characterization

Theorem (Caro, Hansberg, Montejano, 2020)]

A graph is balanceable if and only if it has both:
1. A cut crossed by half of its edges;

2. An induced subgraph containing half of its edges.
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Proof of the characterization (1)

G is balanceable =
It has to fit in those two specific colorings of K, :

type A type B
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Proof of the characterization (1)

G is balanceable =
It has to fit in those two specific colorings of K, :

type A type B

Those two specific colorings of K, can be balanced
(IRI=1B|= %('2’)) for an infinity of values of n.
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Proof of the characterization (2)

Theorem (Caro, Hansberg, Montejano, 2020)]

1
For every t, there exists ¢(n, t) € 6’(n2 m(®) ) such that, if nis large
enough, then, every 2-edge-coloring of K, verifying |R|,|B| =
¢(n, t) contains either a type A or a type B copy of Ky;.

Also shown (with a bound of €(3)) by Cutler & Montagh (2008)
and Fox & Sudakov (2008).

type A type B
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Proof of the characterization (2)
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1
For every t, there exists ¢(n, t) € @’(n2 m(®) ) such that, if nis large
enough, then, every 2-edge-coloring of K, verifying |R|,|B| =
¢(n, t) contains either a type A or a type B copy of Ky;.

Also shown (with a bound of €(3)) by Cutler & Montagh (2008)
and Fox & Sudakov (2008).

type A type B

= Gives a subquadratic bound for bal(n, G)
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Proof of the characterization (3)

Theorem (Caro, Hansberg, Montejano, 2020)]
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Proof of the characterization (3)

Theorem (Caro, Hansberg, Montejano, 2020)]

1
For every t, there exists ¢(n, t) € @’(nz_ m(®) ) such that, if nis large
enough, then, every 2-edge-coloring of K, verifying |R|,|B| =
¢(n, t) contains either a type A or a type B copy of Ko;.

SN = D

Koq Koq
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Previous results on balanceability

» Caro, Hansberg, Montejano (2019)
> bal(n,Ks)=n—-1 or n (depending on n mod 4)
> No other complete graph with an even number of edges is
balanceable!
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> For k even and n=max(3, 1— 1),
bal(n, Ky x) = bal(n, Ky, k+1)— (%) Kk
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Previous results on balanceability

» Caro, Hansberg, Montejano (2019)
> bal(n,Ks)=n—-1 or n (depending on n mod 4)
> No other complete graph with an even number of edges is
balanceable!

» Caro, Hansberg, Montejano (2020)

> Trees are balanceable
For n=4k, bal(n, Ty) < (k- )

> For k even and n=max(3, L, 1),
bal(n, K1,k) = bal(n, K1,k+1) = (%) Kk

> For nz35k2+3k+1,
bal(n, Pax) = bal(n, Pak+1) = (k= 1)n-3(k?> - k-13)
bal(n, Pak—2) = bal(n, Pay_1) = (k—1)n— 3 (k? - k)
A\ Py is the path on k edges (sorry ©)

» Caro, Lauri, Zarb (2020)

» Balancing numbers of the graphs with at most 4 edges
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Cycles

,_[Theorem (D., Eslava, Hansberg, Ventura, 2020+)]

Let k be a positive integer, and n be an integer such that
nz3k?+Bk+3 eteel-1,1}
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Cycles

,_[Theorem (D., Eslava, Hansberg, Ventura, 2020+)]

Let k be a positive integer, and n be an integer such that
nz3k?+Bk+3 eteel-1,1}

» Cyiso is not balanceable ;

» Cyiie is balanceable

» (4 is balanceable
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Cycles

,_[Theorem (D., Eslava, Hansberg, Ventura, 2020+)]

Let k be a positive integer, and n be an integer such that
n= %k2+%k+‘3‘—g, et ee{-1,1}.

» (k4o is not balanceable ;
» Cyise is balanceable, and
bal(n, Cakse) = (k—1)n—3(k2—k—-1-¢) ;

» (4 is balanceable
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Cycles

,_[Theorem (D., Eslava, Hansberg, Ventura, 2020+)]

Let k be a positive integer, and n be an integer such that
nz%k2+ k+49 et ee{-1,1}.

» (k4o is not balanceable ;
» Cyise is balanceable, and
bal(n, Cagre) = (k- 1)n——(k2—k—1—e) ;
» (4 is balanceable, and
(k—=1)n—(k—-1)% <bal(n, Ca) < (k—1)n+12k> + 3k.
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Cycles Cyxi2

Proposition

The cycle Cy4k4o is not balanceable. ]

Proof by contradiction
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Cycles Cyxi2

Proposition

The cycle Cy4k4o is not balanceable.

Proof by contradiction
Cyi42 has a cut containing half of its edges.

M M
b
—

: 2k+1 :
edges
O O
- -
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Cycles Cyxi2

Proposition

The cycle Cy4k4o is not balanceable.

Proof by contradictio

n

Cyi42 has a cut containing half of its edges.

-

Start

)

L o—|

O_/

2k+1
edges

'SR

B

End
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Odd cycles

Proposition

Let k be a positive integer, n be an integer such that
nz3k?+Bk+3 eteel-1,1}

bal(n, Cak+e) = bal(n, Pakse-1)
1
(k—=1)n— 5(k2—/<—1—e)

14/31



Odd cycles

Proposition

Let k be a positive integer, n be an integer such that
nz3k?+Bk+3 eteel-1,1}

bal(n, Cak+e) = bal(n, Pakse-1)
1
(k—=1)n— 5(k2—/<—1—e)

(.

Proof (for Cax+1)

Balanced Py, =
2k edges of each color

14/31



Odd cycles

Proposition

Let k be a positive integer, n be an integer such that
nz3k?+Bk+3 eteel-1,1}

bal(n, Cak+e) = bal(n, Pakse-1)
1
(k—=1)n— 5(k2—/<—1—e)

(.

Proof (for Cax+1)

Balanced Py, =
2k edges of each color

14/31



Odd cycles

Proposition

Let k be a positive integer, n be an integer such that

nz3k?+Bk+3 eteel-1,1}

bal(n, Pak+e-1)
1
(k—=1)n— 5(k2—/<—1—e)

bal(n, Cak+e)

(.

Proof (for Cax+1)

Balanced Py, =
2k edges of each color

We can close the cycle
which will be balanced
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Odd cycles

Proposition

Let k be a positive integer, n be an integer such that
nz2k?+L3k+ B etee(-1,1}.

32

bal(n, Pak+e-1)

bal(n, Cak+e)
(k—=1)n— %(kz—k—l—e)

(.

Proof (for Cax+1)

Balanced Cyri1 =
A color with 2k +1 edges

Removing one gives
a balanced Py
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Cycles Cyy

The proof for odd cycles does not work:
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Cycles Cyy

The proof for odd cycles does not work:

Balanced Pgk_1
= The cycle may be

non-balanced

Theorem (D., Eslava, Hansberg, Ventura, 2020+)]

9,2,13, , 49
For n2§k +Tk+32'

(k=1)n—(k—=1)? <bal(n, Ca) < (k—1)n+12k>+3k
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Cycles Cyk: lower bound

Proposition

For every n=4k, bal(n, Cax) = (k—1)n—(k—1). ]
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Cycles Cyk: lower bound

Proposition

For every n=4k, bal(n, Cax) = (k—1)n—(k—1). ]

Proof

We build a 2-edge-coloring R u B with no balanced Cyx and such
that |B| > |R| = (k—1)n—(k-1)2.

16/31
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Proposition

For every n=4k, bal(n, Cax) = (k—1)n—(k—1). ]

Proof

We build a 2-edge-coloring R u B with no balanced Cyx and such
that |B| > |R| = (k—1)n—(k-1)2.

k-1

- n—k+1
vertices

vertices
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Cycles Cyk: lower bound

Proposition

For every n=4k, bal(n, Cax) = (k—1)n—(k—1). ]

Proof

We build a 2-edge-coloring R u B with no balanced Cyx and such
that |B| > |R| = (k—1)n—(k-1)2.

k-1

- n—k+1
vertices

vertices

= A cycle can have at most 2k —2 edges in R.
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Cycles Cyx: upper bound (1)

Proposition

9,2, 13 49 .
Let k>0 and n2§k +Tk+3_2'

bal(n, Cax) < (k—1)n+12k> + 3k.

Proof by contradiction
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Proposition

9,2, 13 49.
Let k>0 and n2§k +Tk+3_2-

bal(n, Cax) < (k—1)n+12k? + 3k.

Proof by contradiction
|RI, 1Bl >bal(n, Psx—2) = There is a balanced Pgx_».
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Cycles Cyx: upper bound (1)

Proposition

9,2, 13 49.
Let k>0 and n2§k +Tk+3_2-

bal(n, Cax) < (k—1)n+12k? + 3k.

Proof by contradiction
|RI, 1Bl >bal(n, Psx—2) = There is a balanced Pgx_».
= We close it with (wlog) a B edge

4k —1 vertices
—_ 2k-1in R

2k in B
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Cycles Cyx: upper bound (2)

Proof by contradiction (sequel)

Vs

Kn
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Cycles Cyx: upper bound (2)

Proof by contradiction (sequel)

s

Kn

J

Lemmas enforce the colors of E(X), E(Y) and E(X,Y).
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Cycles Cyx: upper bound (2)

Proof by contradiction (sequel)

( N\
. Kn
u3
u?
Cak-1
u1
U
|\ J

We cannot have |X|,|Y|=k
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Cycles Cyx: upper bound (2)

Proof by contradiction (sequel)

Vs

Kn

We cannot have |X],|Y|= k = wlog, assume | X]| < k
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Cycles Cyx: upper bound (2)

Proof by contradiction (sequel)
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uX
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Cycles Cyx: upper bound (2)

Proof by contradiction (sequel)

Vs

(.

Cak-1
uX

Kn

J

Consider the graph induced by (C4x+1UX,Y)NR.
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Proof by contradiction (sequel)

Vs

(.

n
OO0
S 2k-1] -
Cak-1 | =l
O= =0

J

Consider the graph induced by (C4x+1UX,Y)NR.
It contains = (k—1)n edges; and ex(n, Pox—1) < (k—1)n [FS13] = It contains a Poy_1.
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Cycles Cyx: upper bound (2)

Proof by contradiction (sequel)

Vs

(.

Kn

Y
O O
Of—+0
clok-1] -
C _ . R .
4kX1 o- o Y
U O FO
-O
ol—
e

J

Consider the graph induced by (C4x+1UX,Y)NR.
It contains = (k—1)n edges; and ex(n, Pox—1) < (k—1)n [FS13] = It contains a Poy_1.

There remain enough edges in R to have a K 2.
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Cycles Cyx: upper bound (2)

Proof by contradiction (sequel)

Kn
o) —
o lod
C4k—1 C:}\zk‘_i{:) 2k
uX o E_ Y
°<<\o}
_ — J

Consider the graph induced by (C4x+1UX,Y)NR.
It contains = (k—1)n edges; and ex(n, Pox—1) < (k—1)n [FS13] = It contains a Poy_1.
There remain enough edges in R to have a K 2.

We complete with edges in Y, which will be in B, and we get a balanced Cyy.

= Contradiction 18/31



Circulant graphs Cy
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Circulant graphs Cy

Definition
Ck,¢ is a cycle Cy

19/31



Circulant graphs Cy ¢

Definition
Ck,¢ is a cycle C with the vjujy, chords.
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Circulant graphs Cy ¢

Definition
Ck,¢ is a cycle C with the vjujy, chords.

Contains antiprisms and Mobius ladders.
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Circulant graphs Cy

Theorem (D., Hansberg, Ventura, 2021)]

Let k>3 and £€{2,...,k—2}. The graph Cy, is balanceable if
and only if k is even and (k,¢) #(6,2).
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Circulant graphs Cy
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Work in progress

> K, with 221 odd

Common integer solutions of k(n—k)=13(5)+4 and

4 1 1

(R)=20)%3

= Explicit, but difficult to combine... found by computation:
1. ne{2,3,7,11,14,38,62,79,359,43.262} = Balanceable
2. Other values of n<1079%590 = Non-balanceable

> 2K,
Balanceable & n is the sum of two squares

= Allows us to break graph operators (disjoint union, joint...)!
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Summary

Circulant graphs

[] Balanceable
1 Non-balanceable

[C] exact value of bal(n, G)
'__J' non-trivial bounds for bal(n, G)

ne{7,11,14,38,
62,79,359,43.262}

n=5 and
n(n-1)
——=— even,
n< 10765.500

Crr

Coke
incl. antiprisms
and Mobius ladders

[CHM, 2020], [CLZ, 2020]
[D., Hansberg, Talon,
Ventura, 2022+]

[D., Eslava, Hansberg,
Ventura, 2020+]

Coo <L

Cokr1,e

[D., Hansberg, Ventura, 2021]
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Summary

Circulant graphs

Grids

[] Balanceable
1 Non-balanceable

[C] exact value of bal(n, G)
'__J' non-trivial bounds for bal(n, G)

[CHM, 2020], [CLZ, 2020]
[D., Hansberg, Talon,
Ventura, 2022+]

Cycles Ck,¢
Odd Cok,e
incl. antiprisms
ne(7.11,14,38, = and Mobius ladders
62,79,359,43.262} " Cap |
|
= il C
6,2 @}
n=5 and
n1-1) oen Cas2
n < 10765500 C2k+1_[
[D., Eslava, Hansberg,

Ventura, 2020+]
[D., Hansberg, Ventura, 2021]

Tgi, Tgk+1

[D., Hansberg, Ventura, 2021]

| Gaks1,2041 |

‘T§k+4r7ék+5‘
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Non-balanceable graphs

Theorem (Caro, Hansberg, Montejano, 2020)]

A graph is balanceable if and only if it has both:
1. A cut crossed by half of its edges;

2. An induced subgraph containing half of its edges.

» C4i42 has the induced subgraph, not the cut
» Ks has neither

— Can we differentiate "levels" of non-balanceability?
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ldea
From a 2-edge-coloring to a 2-edge-covering:
1. The edges are labeled with {r}, {b} or {r, b}.

2. Edges labeled with {r, b} are called bicolored; we can choose
their color.

3. Denoting the 2-edge-covering by ¢, R={e | re c(e)} and
B={e| bec(e)}.

Definition (D., Eslava, Hansberg, Ventura, 2020+)]

Let bal*(n, G) be the smallest integer such that every 2-edge-
covering RuU B of K, verifying |R|,|B| > bal*(n, G) contains a
balanced copy of G.

bal*(n, G) is called the generalized balancing number of G.

= Every graph has a generalized balancing number!
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First results

Proposition

If bal(n, G) exists, then bal*(n, G) =bal(n, G).
Otherwise, %(3) < bal*(n, G) < (5).

Counting bicolored edges
If |RI,1B] = 3(5) + b:

o

212

= 2b bicolored

| B\R edges
‘ b | 3()-b
2

If k bicolored edges guarantee a balanced copy of G, then
bal*(n, G) < 3(3) + [ 4] -1.

Proposition
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A general upper bound

> #(G)= {Hs Gle(H)= [e(ZG)J» H with no isolated vertex}

,_[Theorem (D., Eslava, Hansberg, Ventura, 2020+)]

For every G(V,E) and n=|V/|, we have

bal*(n, G) < %(;) + [—ex(n,if(G))w )

|\ J

Proof

If there are at least ex(n, #(G))+1 bicolored edges, we can select
them, complete the copy of G, and assign the colors of the
bicolored edges to balance the copy.
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Applying the upper bound

Cycles Cyp2

> H(Cyi+2) = linear forests of size 2k +1
> bal*(n, Caxs2) < 2(5) + 2 + (1) [Ning, Wang, 2020]
Ks

= LI 4, B

Theorem (D., Eslava, Hansberg, Ventura, 2020+)]

For every integer n=5, ex(n, #(Ks)) = ex(n,{C3, C4, C5}). ]

> bal*(n, Ks) < 3(5 )+(1+€)4\1f2n% [Fiiredi, Simonovits, 2013]

— Quality of this bound?
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Generalized balancing number of Gy

Theorem (D., Eslava, Hansberg, Ventura, 2020+)]
bal*(n, Cak+2) = 2(5) ]

Proof idea
1. Assume |R|,|B|>4(5): there are at least 2 bicolored edges.
2. Let t=3k+1. We find a type A or type B copy of Ko;.

typeAD D D Dtypes

3. If type A copy: balanced copy of Cykyo.

4. If type B copy: wherever the bicolored edge is, we can find a
balanced copy of Cykyo.

28/31
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Lower bound for Kjs

Proposition

5
Let c= (‘2_2—\/'51)2 We have bal*(n, Ks) = 3(5) +(1—€)cns.

Proof
We build a 2-edge-covering of K, with no balanced Ks.

Bicolored graph
of girth =6

Then, we prove |R|,|B| > %('2’) +(1—e)cn%.
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Quality of the general upper bound

Cycles Cyxip
> General upper bound: bal*(n, C4x12) < %('2’) + %+@’(1)
> Exact value: bal*(n, Cax12) = %(;’)

Ks
> General upper bound: bal*(n,Ks) < 3(5) +(1+ )ﬁn%
5
> Lower bound: bal*(n,Ks) = 3(5) +(1- e)(%)2 n3

— There are differences among non-balanceable graphs.
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