Balanceability

Antoine Dailly

Joint work with Laura Eslava ${ }^{1}$, Adriana Hansberg ${ }^{2}$, Alexandre Talon and Denae Ventura ${ }^{2}$.

1 IIMAS - Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
${ }^{2}$ Instituto de Matemáticas, UNAM Juriquilla

Context: Ramsey Theory

Idea

Guarantee the existence of ordered substructures within large chaotic structures.

Ramsey's Theorem (for 2-colorings) (1930)

For any k, there is an integer $R(k)$ such that, if $n \geq R(k)$, then, every 2-edge-coloring of K_{n} contains a monochromatic K_{k}.

Context: extremal graph theory

Idea

Find the minimum density guaranteeing a given property, and the densest graphs for which it does not hold.

Turán's Theorem (1941)

If G of order n contains more than $\left(1-\frac{1}{k}\right) \frac{n^{2}}{2}$ edges, then, G contains a K_{k+1}.
The extremal graph is the balanced complete k-partite graph of order n.

Notations for the rest of the talk

- We consider 2-edge-colorings of $K_{n}: E\left(K_{n}\right)=R \sqcup B$.
- We denote by ex (n, G) the maximum number of edges in a G-free graph of order n.

Notations for the rest of the talk

- We consider 2-edge-colorings of $K_{n}: E\left(K_{n}\right)=R \sqcup B$.
- We denote by ex (n, G) the maximum number of edges in a G-free graph of order n.

Goal: generalizing Ramsey's ideas and looking for unavoidable patterns other than monochromatic copies.

r-tonality

Definition

An (r, b)-copy of a graph $G(V, E)$ (with $r+b=|E|)$ is a copy of G with r edges in R and b edges in B.

r-tonality

Definition

An (r, b)-copy of a graph $G(V, E)$ (with $r+b=|E|)$ is a copy of G with r edges in R and b edges in B.
\Rightarrow By Ramsey, if n is large enough, we always have a $(0,|E|)$-copy or an ($|E|, 0$)-copy of G.

r-tonality

Definition

An (r, b)-copy of a graph $G(V, E)$ (with $r+b=|E|$) is a copy of G with r edges in R and b edges in B.
\Rightarrow By Ramsey, if n is large enough, we always have a $(0,|E|)$-copy or an ($|E|, 0$)-copy of G.

We want to guarantee the existence of an (r, b)-copy of G (for a given $r>0$).

r-tonality

Definition

An (r, b)-copy of a graph $G(V, E)$ (with $r+b=|E|$) is a copy of G with r edges in R and b edges in B.
\Rightarrow By Ramsey, if n is large enough, we always have a $(0,|E|)$-copy or an ($|E|, 0$)-copy of G.

We want to guarantee the existence of an (r, b)-copy of G (for a given $r>0$).
\Rightarrow Need for a given density of each color class.

r-tonality

Definition

An (r, b)-copy of a graph $G(V, E)$ (with $r+b=|E|$) is a copy of G with r edges in R and b edges in B.
\Rightarrow By Ramsey, if n is large enough, we always have a $(0,|E|)$-copy or an ($|E|, 0$)-copy of G.

We want to guarantee the existence of an (r, b)-copy of G (for a given $r>0$).
\Rightarrow Need for a given density of each color class.

r-tonality

If, for every n large enough, there exists $k(n, r)$ such that every 2-edge-coloring $R \sqcup B$ of K_{n} verifying $|R|,|B|>k(n, r)$ contains an (r, b)-copy of G, then G is r-tonal.

Balanceability: when $r=\frac{|E|}{2}$

Balanced copy

A balanced copy of $G(V, E)$ is an (r, b)-copy of G with $r \in\left\{\left\lfloor\frac{|E|}{2}\right\rfloor,\left\lceil\frac{|E|}{2}\right\rceil\right\}$.

Balanceability: when $r=\frac{|E|}{2}$

Balanced copy

A balanced copy of $G(V, E)$ is an (r, b)-copy of G with $r \in\left\{\left\lfloor\frac{|E|}{2}\right\rfloor,\left\lceil\frac{|E|}{2}\right\rceil\right\}$.

Balanceability (Caro, Hansberg, Montejano, 2020)

Let bal (n, G) be the smallest integer, if it exists, such that every 2-edge-coloring $R \sqcup B$ of K_{n} verifying $|R|,|B|>\operatorname{bal}(n, G)$ contains a balanced copy of G.

Balanceability: when $r=\frac{|E|}{2}$

Balanced copy

A balanced copy of $G(V, E)$ is an (r, b)-copy of G with $r \in\left\{\left\lfloor\frac{|E|}{2}\right\rfloor,\left\lceil\frac{|E|}{2}\right\rceil\right\}$.

Balanceability (Caro, Hansberg, Montejano, 2020)

Let $\operatorname{bal}(n, G)$ be the smallest integer, if it exists, such that every 2-edge-coloring $R \sqcup B$ of K_{n} verifying $|R|,|B|>\operatorname{bal}(n, G)$ contains a balanced copy of G.
If there is an n_{0} such that, for every $n \geq n_{0}$, bal (n, G) exists, then G is balanceable

Balanceability: when $r=\frac{|E|}{2}$

Balanced copy

A balanced copy of $G(V, E)$ is an (r, b)-copy of G with $r \in\left\{\left\lfloor\frac{|E|}{2}\right\rfloor,\left\lceil\frac{|E|}{2}\right\rceil\right\}$.

Balanceability (Caro, Hansberg, Montejano, 2020)

Let $\operatorname{bal}(n, G)$ be the smallest integer, if it exists, such that every 2-edge-coloring $R \sqcup B$ of K_{n} verifying $|R|,|B|>\operatorname{bal}(n, G)$ contains a balanced copy of G.
If there is an n_{0} such that, for every $n \geq n_{0}$, bal (n, G) exists, then G is balanceable and $\operatorname{bal}(n, G)$ is its balancing number.

Balanceability: when $r=\frac{|E|}{2}$

Balanced copy

A balanced copy of $G(V, E)$ is an (r, b)-copy of G with $r \in\left\{\left\lfloor\frac{|E|}{2}\right\rfloor,\left\lceil\frac{|E|}{2}\right\rceil\right\}$.

Balanceability (Caro, Hansberg, Montejano, 2020)

Let $\operatorname{bal}(n, G)$ be the smallest integer, if it exists, such that every 2-edge-coloring $R \sqcup B$ of K_{n} verifying $|R|,|B|>\operatorname{bal}(n, G)$ contains a balanced copy of G.
If there is an n_{0} such that, for every $n \geq n_{0}, \operatorname{bal}(n, G)$ exists, then G is balanceable and $\operatorname{bal}(n, G)$ is its balancing number.

Ramsey-type problem
Extremal-type problem

Characterization

Theorem (Caro, Hansberg, Montejano, 2020)
A graph is balanceable if and only if it has both:

Characterization

Theorem (Caro, Hansberg, Montejano, 2020)

A graph is balanceable if and only if it has both:

1. A cut crossed by half of its edges;

Characterization

Theorem (Caro, Hansberg, Montejano, 2020)

A graph is balanceable if and only if it has both:

1. A cut crossed by half of its edges;
2. An induced subgraph containing half of its edges.

Proof of the characterization (1)

G is balanceable \Rightarrow
It has to fit in those two specific colorings of K_{n} :

type A

type B

Proof of the characterization (1)

G is balanceable \Rightarrow
It has to fit in those two specific colorings of K_{n} :

type A

type B

Proof of the characterization (1)

G is balanceable \Rightarrow
It has to fit in those two specific colorings of K_{n} :

type A

type B

Proof of the characterization (1)

G is balanceable \Rightarrow
It has to fit in those two specific colorings of K_{n} :

Those two specific colorings of K_{n} can be balanced $\left(|R|=|B|=\frac{1}{2}\binom{n}{2}\right.$) for an infinity of values of n.

Proof of the characterization (2)

Theorem (Caro, Hansberg, Montejano, 2020)

For every t, there exists $\phi(n, t) \in \mathscr{O}\left(n^{2-\frac{1}{m(t)}}\right)$ such that, if n is large enough, then, every 2-edge-coloring of K_{n} verifying $|R|,|B| \geq$ $\phi(n, t)$ contains either a type A or a type B copy of $K_{2 t}$.

Also shown (with a bound of $\epsilon\binom{n}{2}$) by Cutler \& Montágh (2008) and Fox \& Sudakov (2008).

type A

type B

Proof of the characterization (2)

Theorem (Caro, Hansberg, Montejano, 2020)

For every t, there exists $\phi(n, t) \in \mathscr{O}\left(n^{2-\frac{1}{m(t)}}\right)$ such that, if n is large enough, then, every 2-edge-coloring of K_{n} verifying $|R|,|B| \geq$ $\phi(n, t)$ contains either a type A or a type B copy of $K_{2 t}$.

Also shown (with a bound of $\epsilon\binom{n}{2}$) by Cutler \& Montágh (2008) and Fox \& Sudakov (2008).

type A

type B
\Rightarrow Gives a subquadratic bound for $\operatorname{bal}(n, G)$

Proof of the characterization (3)

Theorem (Caro, Hansberg, Montejano, 2020)

For every t, there exists $\phi(n, t) \in \mathscr{O}\left(n^{2-\frac{1}{m(t)}}\right)$ such that, if n is large enough, then, every 2-edge-coloring of K_{n} verifying $|R|,|B| \geq$ $\phi(n, t)$ contains either a type A or a type B copy of $K_{2 t}$.

Proof of the characterization (3)

Theorem (Caro, Hansberg, Montejano, 2020)
For every t, there exists $\phi(n, t) \in \mathscr{O}\left(n^{2-\frac{1}{m(t)}}\right)$ such that, if n is large enough, then, every 2-edge-coloring of K_{n} verifying $|R|,|B| \geq$ $\phi(n, t)$ contains either a type A or a type B copy of $K_{2 t}$.

Proof of the characterization (3)

Theorem (Caro, Hansberg, Montejano, 2020)
For every t, there exists $\phi(n, t) \in \mathscr{O}\left(n^{2-\frac{1}{m(t)}}\right)$ such that, if n is large enough, then, every 2-edge-coloring of K_{n} verifying $|R|,|B| \geq$ $\phi(n, t)$ contains either a type A or a type B copy of $K_{2 t}$.

Proof of the characterization (3)

Theorem (Caro, Hansberg, Montejano, 2020)
For every t, there exists $\phi(n, t) \in \mathscr{O}\left(n^{2-\frac{1}{m(t)}}\right)$ such that, if n is large enough, then, every 2-edge-coloring of K_{n} verifying $|R|,|B| \geq$ $\phi(n, t)$ contains either a type A or a type B copy of $K_{2 t}$.

Proof of the characterization (3)

Theorem (Caro, Hansberg, Montejano, 2020)
For every t, there exists $\phi(n, t) \in \mathscr{O}\left(n^{2-\frac{1}{m(t)}}\right)$ such that, if n is large enough, then, every 2-edge-coloring of K_{n} verifying $|R|,|B| \geq$ $\phi(n, t)$ contains either a type A or a type B copy of $K_{2 t}$.

Proof of the characterization (3)

Theorem (Caro, Hansberg, Montejano, 2020)
For every t, there exists $\phi(n, t) \in \mathscr{O}\left(n^{2-\frac{1}{m(t)}}\right)$ such that, if n is large enough, then, every 2-edge-coloring of K_{n} verifying $|R|,|B| \geq$ $\phi(n, t)$ contains either a type A or a type B copy of $K_{2 t}$.

Proof of the characterization (3)

Theorem (Caro, Hansberg, Montejano, 2020)
For every t, there exists $\phi(n, t) \in \mathscr{O}\left(n^{2-\frac{1}{m(t)}}\right)$ such that, if n is large enough, then, every 2-edge-coloring of K_{n} verifying $|R|,|B| \geq$ $\phi(n, t)$ contains either a type A or a type B copy of $K_{2 t}$.

Proof of the characterization (3)

Theorem (Caro, Hansberg, Montejano, 2020)
For every t, there exists $\phi(n, t) \in \mathscr{O}\left(n^{2-\frac{1}{m(t)}}\right)$ such that, if n is large enough, then, every 2-edge-coloring of K_{n} verifying $|R|,|B| \geq$ $\phi(n, t)$ contains either a type A or a type B copy of $K_{2 t}$.

Proof of the characterization (3)

Theorem (Caro, Hansberg, Montejano, 2020)
For every t, there exists $\phi(n, t) \in \mathscr{O}\left(n^{2-\frac{1}{m(t)}}\right)$ such that, if n is large enough, then, every 2-edge-coloring of K_{n} verifying $|R|,|B| \geq$ $\phi(n, t)$ contains either a type A or a type B copy of $K_{2 t}$.

Proof of the characterization (3)

Theorem (Caro, Hansberg, Montejano, 2020)
For every t, there exists $\phi(n, t) \in \mathscr{O}\left(n^{2-\frac{1}{m(t)}}\right)$ such that, if n is large enough, then, every 2-edge-coloring of K_{n} verifying $|R|,|B| \geq$ $\phi(n, t)$ contains either a type A or a type B copy of $K_{2 t}$.

Proof of the characterization (3)

Theorem (Caro, Hansberg, Montejano, 2020)
For every t, there exists $\phi(n, t) \in \mathscr{O}\left(n^{2-\frac{1}{m(t)}}\right)$ such that, if n is large enough, then, every 2-edge-coloring of K_{n} verifying $|R|,|B| \geq$ $\phi(n, t)$ contains either a type A or a type B copy of $K_{2 t}$.

Previous results on balanceability

- Caro, Hansberg, Montejano (2019)
- bal $\left(n, K_{4}\right)=n-1$ or $n($ depending on $n \bmod 4)$
- No other complete graph with an even number of edges is balanceable!

Previous results on balanceability

- Caro, Hansberg, Montejano (2019)
- $\operatorname{bal}\left(n, K_{4}\right)=n-1$ or $n($ depending on $n \bmod 4)$
- No other complete graph with an even number of edges is balanceable!
- Caro, Hansberg, Montejano (2020)
- Trees are balanceable For $n \geq 4 k, \operatorname{bal}\left(n, T_{k}\right) \leq(k-1) n$
- For k even and $n \geq \max \left(3, \frac{k^{2}}{4}+1\right)$,
$\operatorname{bal}\left(n, K_{1, k}\right)=\operatorname{bal}\left(n, K_{1, k+1}\right)=\left(\frac{k-2}{2}\right) n-\frac{k^{2}}{8}+\frac{k}{4}$
- For $n \geq \frac{9}{32} k^{2}+\frac{1}{4} k+1$,
$\operatorname{bal}\left(n, P_{4 k}\right)=\operatorname{bal}\left(n, P_{4 k+1}\right)=(k-1) n-\frac{1}{2}\left(k^{2}-k-\frac{1}{2}\right)$
$\operatorname{bal}\left(n, P_{4 k-2}\right)=\operatorname{bal}\left(n, P_{4 k-1}\right)=(k-1) n-\frac{1}{2}\left(k^{2}-k\right)$
$\triangle P_{k}$ is the path on k edges (sorry $\left.\mathcal{O}^{2}\right)$

Previous results on balanceability

- Caro, Hansberg, Montejano (2019)
- $\operatorname{bal}\left(n, K_{4}\right)=n-1$ or $n($ depending on $n \bmod 4)$
- No other complete graph with an even number of edges is balanceable!
- Caro, Hansberg, Montejano (2020)
- Trees are balanceable For $n \geq 4 k, \operatorname{bal}\left(n, T_{k}\right) \leq(k-1) n$
- For k even and $n \geq \max \left(3, \frac{k^{2}}{4}+1\right)$,
$\operatorname{bal}\left(n, K_{1, k}\right)=\operatorname{bal}\left(n, K_{1, k+1}\right)=\left(\frac{k-2}{2}\right) n-\frac{k^{2}}{8}+\frac{k}{4}$
- For $n \geq \frac{9}{32} k^{2}+\frac{1}{4} k+1$,
$\operatorname{bal}\left(n, P_{4 k}\right)=\operatorname{bal}\left(n, P_{4 k+1}\right)=(k-1) n-\frac{1}{2}\left(k^{2}-k-\frac{1}{2}\right)$
$\operatorname{bal}\left(n, P_{4 k-2}\right)=\operatorname{bal}\left(n, P_{4 k-1}\right)=(k-1) n-\frac{1}{2}\left(k^{2}-k\right)$
$\triangle P_{k}$ is the path on k edges (sorry $\left.\mathcal{O}^{2}\right)$
- Caro, Lauri, Zarb (2020)
- Balancing numbers of the graphs with at most 4 edges

Cycles

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
Let k be a positive integer, and n be an integer such that $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$, et $\epsilon \in\{-1,1\}$.

Cycles

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
Let k be a positive integer, and n be an integer such that $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$, et $\epsilon \in\{-1,1\}$.

- $C_{4 k+2}$ is not balanceable ;

Cycles

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
Let k be a positive integer, and n be an integer such that $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$, et $\epsilon \in\{-1,1\}$.

- $C_{4 k+2}$ is not balanceable ;
- $C_{4 k+\varepsilon}$ is balanceable
- $C_{4 k}$ is balanceable

Cycles

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
Let k be a positive integer, and n be an integer such that $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$, et $\epsilon \in\{-1,1\}$.

- $C_{4 k+2}$ is not balanceable;
- $C_{4 k+\varepsilon}$ is balanceable, and $\operatorname{bal}\left(n, C_{4 k+\epsilon}\right)=(k-1) n-\frac{1}{2}\left(k^{2}-k-1-\epsilon\right)$;
- $C_{4 k}$ is balanceable

Cycles

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
Let k be a positive integer, and n be an integer such that $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$, et $\epsilon \in\{-1,1\}$.

- $C_{4 k+2}$ is not balanceable;
- $C_{4 k+\varepsilon}$ is balanceable, and $\operatorname{bal}\left(n, C_{4 k+\epsilon}\right)=(k-1) n-\frac{1}{2}\left(k^{2}-k-1-\epsilon\right)$;
- $C_{4 k}$ is balanceable, and $(k-1) n-(k-1)^{2} \leq \operatorname{bal}\left(n, C_{4 k}\right) \leq(k-1) n+12 k^{2}+3 k$.

Cycles $C_{4 k+2}$

Proposition

The cycle $C_{4 k+2}$ is not balanceable.

Proof by contradiction

Cycles $C_{4 k+2}$

Proposition

The cycle $C_{4 k+2}$ is not balanceable.

Proof by contradiction
$C_{4 k+2}$ has a cut containing half of its edges.

Cycles $C_{4 k+2}$

Proposition

The cycle $C_{4 k+2}$ is not balanceable.

Proof by contradiction
$C_{4 k+2}$ has a cut containing half of its edges.

Odd cycles

Proposition

Let k be a positive integer, n be an integer such that $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$, et $\epsilon \in\{-1,1\}$.

$$
\begin{aligned}
\operatorname{bal}\left(n, C_{4 k+\epsilon}\right) & =\operatorname{bal}\left(n, P_{4 k+\epsilon-1}\right) \\
& =(k-1) n-\frac{1}{2}\left(k^{2}-k-1-\epsilon\right)
\end{aligned}
$$

Odd cycles

Proposition

Let k be a positive integer, n be an integer such that $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$, et $\epsilon \in\{-1,1\}$.

$$
\begin{aligned}
\operatorname{bal}\left(n, C_{4 k+\epsilon}\right) & =\operatorname{bal}\left(n, P_{4 k+\epsilon-1}\right) \\
& =(k-1) n-\frac{1}{2}\left(k^{2}-k-1-\epsilon\right)
\end{aligned}
$$

Proof (for $C_{4 k+1}$)

Odd cycles

Proposition

Let k be a positive integer, n be an integer such that $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$, et $\epsilon \in\{-1,1\}$.

$$
\begin{aligned}
\operatorname{bal}\left(n, C_{4 k+\epsilon}\right) & =\operatorname{bal}\left(n, P_{4 k+\epsilon-1}\right) \\
& =(k-1) n-\frac{1}{2}\left(k^{2}-k-1-\epsilon\right)
\end{aligned}
$$

Proof (for $C_{4 k+1}$)

Odd cycles

Proposition

Let k be a positive integer, n be an integer such that $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$, et $\epsilon \in\{-1,1\}$.

$$
\begin{aligned}
\operatorname{bal}\left(n, C_{4 k+\epsilon}\right) & =\operatorname{bal}\left(n, P_{4 k+\epsilon-1}\right) \\
& =(k-1) n-\frac{1}{2}\left(k^{2}-k-1-\epsilon\right)
\end{aligned}
$$

Proof (for $C_{4 k+1}$)

Balanced $P_{4 k} \Rightarrow$
$2 k$ edges of each color
We can close the cycle which will be balanced

Odd cycles

Proposition

Let k be a positive integer, n be an integer such that $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$, et $\epsilon \in\{-1,1\}$.

$$
\begin{aligned}
\operatorname{bal}\left(n, C_{4 k+\epsilon}\right) & =\operatorname{bal}\left(n, P_{4 k+\epsilon-1}\right) \\
& =(k-1) n-\frac{1}{2}\left(k^{2}-k-1-\epsilon\right)
\end{aligned}
$$

Proof (for $C_{4 k+1}$)

Odd cycles

Proposition

Let k be a positive integer, n be an integer such that $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$, et $\epsilon \in\{-1,1\}$.

$$
\begin{aligned}
\operatorname{bal}\left(n, C_{4 k+\epsilon}\right) & =\operatorname{bal}\left(n, P_{4 k+\epsilon-1}\right) \\
& =(k-1) n-\frac{1}{2}\left(k^{2}-k-1-\epsilon\right)
\end{aligned}
$$

Proof (for $C_{4 k+1}$)

Odd cycles

Proposition

Let k be a positive integer, n be an integer such that $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$, et $\epsilon \in\{-1,1\}$.

$$
\begin{aligned}
\operatorname{bal}\left(n, C_{4 k+\epsilon}\right) & =\operatorname{bal}\left(n, P_{4 k+\epsilon-1}\right) \\
& =(k-1) n-\frac{1}{2}\left(k^{2}-k-1-\epsilon\right)
\end{aligned}
$$

Proof (for $C_{4 k+1}$)

Cycles $C_{4 k}$

The proof for odd cycles does not work:

Cycles $C_{4 k}$

The proof for odd cycles does not work:

Balanced $P_{4 k-1}$

Cycles $C_{4 k}$

The proof for odd cycles does not work:

Balanced $P_{4 k-1}$
\Rightarrow The cycle may be
non-balanced

Cycles $C_{4 k}$

The proof for odd cycles does not work:

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
For $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$,

$$
(k-1) n-(k-1)^{2} \leq \operatorname{bal}\left(n, C_{4 k}\right) \leq(k-1) n+12 k^{2}+3 k
$$

Cycles C4k: lower bound

Proposition

For every $n \geq 4 k$, bal $\left(n, C_{4 k}\right) \geq(k-1) n-(k-1)^{2}$.

Cycles $C_{4 k}$: lower bound

Proposition

For every $n \geq 4 k$, bal $\left(n, C_{4 k}\right) \geq(k-1) n-(k-1)^{2}$.

Proof
We build a 2-edge-coloring $R \sqcup B$ with no balanced $C_{4 k}$ and such that $|B| \geq|R|=(k-1) n-(k-1)^{2}$.

Cycles $C_{4 k}$: lower bound

Proposition

For every $n \geq 4 k$, bal $\left(n, C_{4 k}\right) \geq(k-1) n-(k-1)^{2}$.

Proof

We build a 2-edge-coloring $R \sqcup B$ with no balanced $C_{4 k}$ and such that $|B| \geq|R|=(k-1) n-(k-1)^{2}$.

Cycles $C_{4 k}$: lower bound

Proposition

For every $n \geq 4 k$, bal $\left(n, C_{4 k}\right) \geq(k-1) n-(k-1)^{2}$.

Proof

We build a 2-edge-coloring $R \sqcup B$ with no balanced $C_{4 k}$ and such that $|B| \geq|R|=(k-1) n-(k-1)^{2}$.

\Rightarrow A cycle can have at most $2 k-2$ edges in R.

Cycles $C_{4 k}$: upper bound (1)

Proposition

Let $k>0$ and $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$:

$$
\operatorname{bal}\left(n, C_{4 k}\right) \leq(k-1) n+12 k^{2}+3 k .
$$

Proof by contradiction

Cycles $C_{4 k}$: upper bound (1)

Proposition

Let $k>0$ and $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$:

$$
\operatorname{bal}\left(n, C_{4 k}\right) \leq(k-1) n+12 k^{2}+3 k
$$

Proof by contradiction
$|R|,|B|>\operatorname{bal}\left(n, P_{4 k-2}\right) \Rightarrow$ There is a balanced $P_{4 k-2}$.

Cycles $C_{4 k}$: upper bound (1)

Proposition

Let $k>0$ and $n \geq \frac{9}{2} k^{2}+\frac{13}{4} k+\frac{49}{32}$:

$$
\operatorname{bal}\left(n, C_{4 k}\right) \leq(k-1) n+12 k^{2}+3 k .
$$

Proof by contradiction
$|R|,|B|>\operatorname{bal}\left(n, P_{4 k-2}\right) \Rightarrow$ There is a balanced $P_{4 k-2}$.
\Rightarrow We close it with (wlog) a B edge

Cycles $C_{4 k}$: upper bound (2)
Proof by contradiction (sequel)

Cycles $C_{4 k}$: upper bound (2)
Proof by contradiction (sequel)

Cycles $C_{4 k}$: upper bound (2)
Proof by contradiction (sequel)

Lemmas enforce the colors of $E(X), E(Y)$ and $E(X, Y)$.

Cycles $C_{4 k}$: upper bound (2)

Proof by contradiction (sequel)

We cannot have $|X|,|Y| \geq k$

Cycles $C_{4 k}$: upper bound (2)

Proof by contradiction (sequel)

We cannot have $|X|,|Y| \geq k \Rightarrow$ wlog, assume $|X|<k$

Cycles $C_{4 k}$: upper bound (2)

Proof by contradiction (sequel)

Cycles $C_{4 k}$: upper bound (2)

Proof by contradiction (sequel)

Consider the graph induced by $\left(C_{4 k+1} \cup X, Y\right) \cap R$.

Cycles $C_{4 k}$: upper bound (2)

Proof by contradiction (sequel)

Consider the graph induced by $\left(C_{4 k+1} \cup X, Y\right) \cap R$.
It contains $\geq(k-1) n$ edges; and ex $\left(n, P_{2 k-1}\right) \leq(k-1) n[F S 13]$

Cycles $C_{4 k}$: upper bound (2)

Proof by contradiction (sequel)

Consider the graph induced by $\left(C_{4 k+1} \cup X, Y\right) \cap R$.
It contains $\geq(k-1) n$ edges; and ex $\left(n, P_{2 k-1}\right) \leq(k-1) n[F S 13] \Rightarrow$ It contains a $P_{2 k-1}$.

Cycles $C_{4 k}$: upper bound (2)

Proof by contradiction (sequel)

Consider the graph induced by $\left(C_{4 k+1} \cup X, Y\right) \cap R$.
It contains $\geq(k-1) n$ edges; and ex $\left(n, P_{2 k-1}\right) \leq(k-1) n[F S 13] \Rightarrow$ It contains a $P_{2 k-1}$.
There remain enough edges in R to have a $K_{1,2}$.

Cycles $C_{4 k}$: upper bound (2)

Proof by contradiction (sequel)

Consider the graph induced by $\left(C_{4 k+1} \cup X, Y\right) \cap R$.
It contains $\geq(k-1) n$ edges; and $\operatorname{ex}\left(n, P_{2 k-1}\right) \leq(k-1) n[F S 13] \Rightarrow$ It contains a $P_{2 k-1}$.
There remain enough edges in R to have a $K_{1,2}$.
We complete with edges in Y, which will be in B, and we get a balanced $C_{4 k}$.
\Rightarrow Contradiction

Circulant graphs $C_{k, \ell}$

Circulant graphs $C_{k, \ell}$

Definition
$C_{k, \ell}$ is a cycle C_{k}

Circulant graphs $C_{k, \ell}$

Definition

$C_{k, \ell}$ is a cycle C_{k} with the $u_{i} u_{i+\ell}$ chords.

Circulant graphs $C_{k, \ell}$

Definition

$C_{k, \ell}$ is a cycle C_{k} with the $u_{i} u_{i+\ell}$ chords.

Contains antiprisms and Möbius ladders.

Circulant graphs $C_{k, \ell}$

Theorem (D., Hansberg, Ventura, 2021)
Let $k>3$ and $\ell \in\{2, \ldots, k-2\}$. The graph $C_{k, \ell}$ is balanceable if and only if k is even and $(k, \ell) \neq(6,2)$.

Circulant graphs $C_{k, \ell}$

Theorem (D., Hansberg, Ventura, 2021)
Let $k>3$ and $\ell \in\{2, \ldots, k-2\}$. The graph $C_{k, \ell}$ is balanceable if and only if k is even and $(k, \ell) \neq(6,2)$.

Proof in eight cases! Each case uses the characterization.

Circulant graphs $C_{k, \ell}$

Theorem (D., Hansberg, Ventura, 2021)
Let $k>3$ and $\ell \in\{2, \ldots, k-2\}$. The graph $C_{k, \ell}$ is balanceable if and only if k is even and $(k, \ell) \neq(6,2)$.

Proof in eight cases! Each case uses the characterization.
Proof of the case $k=4 a$, ℓ even

Circulant graphs $C_{k, \ell}$

Theorem (D., Hansberg, Ventura, 2021)
Let $k>3$ and $\ell \in\{2, \ldots, k-2\}$. The graph $C_{k, \ell}$ is balanceable if and only if k is even and $(k, \ell) \neq(6,2)$.

Proof in eight cases! Each case uses the characterization.
Proof of the case $k=4 a$, ℓ even

Proposition

If, in $G(V, E)$, I is an independent set such that $\sum_{u \in I} d(u)=$ $\frac{|E|}{2}$, then, G is balanceable.

Circulant graphs $C_{k, \ell}$

Theorem (D., Hansberg, Ventura, 2021)

Let $k>3$ and $\ell \in\{2, \ldots, k-2\}$. The graph $C_{k, \ell}$ is balanceable if and only if k is even and $(k, \ell) \neq(6,2)$.

Proof in eight cases! Each case uses the characterization.
Proof of the case $k=4 a$, ℓ even

Proposition

If, in $G(V, E)$, I is an independent set such that $\sum_{u \in I} d(u)=$ $\frac{|E|}{2}$, then, G is balanceable.

Circulant graphs $C_{k, \ell}$

Theorem (D., Hansberg, Ventura, 2021)

Let $k>3$ and $\ell \in\{2, \ldots, k-2\}$. The graph $C_{k, \ell}$ is balanceable if and only if k is even and $(k, \ell) \neq(6,2)$.

Proof in eight cases! Each case uses the characterization.
Proof of the case $k=4 a$, ℓ even

Proposition

If, in $G(V, E)$, I is an independent set such that $\sum_{u \in I} d(u)=$ $\frac{|E|}{2}$, then, G is balanceable.

Circulant graphs $C_{k, \ell}$

Theorem (D., Hansberg, Ventura, 2021)

Let $k>3$ and $\ell \in\{2, \ldots, k-2\}$. The graph $C_{k, \ell}$ is balanceable if and only if k is even and $(k, \ell) \neq(6,2)$.

Proof in eight cases! Each case uses the characterization.
Proof of the case $k=4 a, \ell$ even

Proposition

If, in $G(V, E)$, I is an independent set such that $\sum_{u \in I} d(u)=$ $\frac{|E|}{2}$, then, G is balanceable.

Work in progress

- K_{n} with $\frac{n(n-1)}{2}$ odd

Common integer solutions of $k(n-k)=\frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$ and $\binom{\ell}{2}=\frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$

Work in progress

- K_{n} with $\frac{n(n-1)}{2}$ odd Common integer solutions of $k(n-k)=\frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$ and $\binom{\ell}{2}=\frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$
\Rightarrow Explicit, but difficult to combine... found by computation:

1. $n \in\{2,3,7,11,14,38,62,79,359,43.262\} \Rightarrow$ Balanceable
2. Other values of $n \leq 10^{765.500} \Rightarrow$ Non-balanceable

Work in progress

- K_{n} with $\frac{n(n-1)}{2}$ odd Common integer solutions of $k(n-k)=\frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$ and $\binom{\ell}{2}=\frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$
\Rightarrow Explicit, but difficult to combine... found by computation:

1. $n \in\{2,3,7,11,14,38,62,79,359,43.262\} \Rightarrow$ Balanceable
2. Other values of $n \leq 10^{765.500} \Rightarrow$ Non-balanceable

- $2 K_{n}$

Work in progress

- K_{n} with $\frac{n(n-1)}{2}$ odd

Common integer solutions of $k(n-k)=\frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$ and $\binom{\ell}{2}=\frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$
\Rightarrow Explicit, but difficult to combine... found by computation:

1. $n \in\{2,3,7,11,14,38,62,79,359,43.262\} \Rightarrow$ Balanceable
2. Other values of $n \leq 10^{765.500} \Rightarrow$ Non-balanceable

- $2 K_{n}$

Balanceable $\Leftrightarrow n$ is the sum of two squares

Work in progress

- K_{n} with $\frac{n(n-1)}{2}$ odd

Common integer solutions of $k(n-k)=\frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$ and
$\binom{\ell}{2}=\frac{1}{2}\binom{n}{2} \pm \frac{1}{2}$
\Rightarrow Explicit, but difficult to combine... found by computation:

1. $n \in\{2,3,7,11,14,38,62,79,359,43.262\} \Rightarrow$ Balanceable
2. Other values of $n \leq 10^{765.500} \Rightarrow$ Non-balanceable

- $2 K_{n}$

Balanceable $\Leftrightarrow n$ is the sum of two squares
\Rightarrow Allows us to break graph operators (disjoint union, joint...)!

Summary

\square Balanceable
Non-balanceable

$$
\begin{array}{ll}
\square & \text { exact value of } \operatorname{bal}(n, G) \\
\square- & \text { non-trivial bounds for } \operatorname{bal}(n, G)
\end{array}
$$

Summary

\square Balanceable
\square exact value of $\operatorname{bal}(n, G)$
\square Non-balanceable
non-trivial bounds for $\operatorname{bal}(n, G)$

Summary

\square Balanceable
\square exact value of $\operatorname{bal}(n, G)$
\square Non-balanceable
non-trivial bounds for $\operatorname{bal}(n, G)$

Non-balanceable graphs

Theorem (Caro, Hansberg, Montejano, 2020)
A graph is balanceable if and only if it has both:

- $C_{4 k+2}$ has the induced subgraph, not the cut
- K_{5} has neither

Non-balanceable graphs

Theorem (Caro, Hansberg, Montejano, 2020)
A graph is balanceable if and only if it has both:

1. A cut crossed by half of its edges;

- $C_{4 k+2}$ has the induced subgraph, not the cut
- K_{5} has neither
\rightarrow Can we differentiate "levels" of non-balanceability?

Non-balanceable graphs

Theorem (Caro, Hansberg, Montejano, 2020)
A graph is balanceable if and only if it has both:

1. A cut crossed by half of its edges;
2. An induced subgraph containing half of its edges.

- $C_{4 k+2}$ has the induced subgraph, not the cut
- K_{5} has neither
\rightarrow Can we differentiate "levels" of non-balanceability?

Generalized balancing number

Idea
From a 2-edge-coloring to a 2-edge-covering:

Generalized balancing number

Idea

From a 2-edge-coloring to a 2-edge-covering:

1. The edges are labeled with $\{r\},\{b\}$ or $\{r, b\}$.

Generalized balancing number

Idea

From a 2-edge-coloring to a 2-edge-covering:

1. The edges are labeled with $\{r\},\{b\}$ or $\{r, b\}$.
2. Edges labeled with $\{r, b\}$ are called bicolored; we can choose their color.

Generalized balancing number

Idea

From a 2-edge-coloring to a 2-edge-covering:

1. The edges are labeled with $\{r\},\{b\}$ or $\{r, b\}$.
2. Edges labeled with $\{r, b\}$ are called bicolored; we can choose their color.
3. Denoting the 2-edge-covering by $c, R=\{e \mid r \in c(e)\}$ and $B=\{e \mid b \in c(e)\}$.

Generalized balancing number

Idea

From a 2-edge-coloring to a 2-edge-covering:

1. The edges are labeled with $\{r\},\{b\}$ or $\{r, b\}$.
2. Edges labeled with $\{r, b\}$ are called bicolored; we can choose their color.
3. Denoting the 2-edge-covering by $c, R=\{e \mid r \in c(e)\}$ and $B=\{e \mid b \in c(e)\}$.

Definition (D., Eslava, Hansberg, Ventura, 2020+)

Let bal* $n, G)$ be the smallest integer such that every 2-edgecovering $R \cup B$ of K_{n} verifying $|R|,|B|>\operatorname{bal}(n, G)$ contains a balanced copy of G. bal (n, G) is called the generalized balancing number of G.

Generalized balancing number

Idea

From a 2-edge-coloring to a 2-edge-covering:

1. The edges are labeled with $\{r\},\{b\}$ or $\{r, b\}$.
2. Edges labeled with $\{r, b\}$ are called bicolored; we can choose their color.
3. Denoting the 2-edge-covering by $c, R=\{e \mid r \in c(e)\}$ and $B=\{e \mid b \in c(e)\}$.

Definition (D., Eslava, Hansberg, Ventura, 2020+)

Let bal* $n, G)$ be the smallest integer such that every 2-edgecovering $R \cup B$ of K_{n} verifying $|R|,|B|>\operatorname{bal}(n, G)$ contains a balanced copy of G.
bal $^{*}(n, G)$ is called the generalized balancing number of G.
\Rightarrow Every graph has a generalized balancing number!

First results

Proposition

If $\operatorname{bal}(n, G)$ exists, then $\operatorname{bal}^{*}(n, G)=\operatorname{bal}(n, G)$. Otherwise, $\frac{1}{2}\binom{n}{2} \leq \operatorname{bal}^{*}(n, G)<\binom{n}{2}$.

First results

Proposition

If $\operatorname{bal}(n, G)$ exists, then $\operatorname{bal}^{*}(n, G)=\operatorname{bal}(n, G)$. Otherwise, $\frac{1}{2}\binom{n}{2} \leq \operatorname{bal}^{*}(n, G)<\binom{n}{2}$.

Counting bicolored edges
If $|R|,|B|=\frac{1}{2}\binom{n}{2}+b$:

First results

Proposition

If $\operatorname{bal}(n, G)$ exists, then $\operatorname{bal}^{*}(n, G)=\operatorname{bal}(n, G)$. Otherwise, $\frac{1}{2}\binom{n}{2} \leq \operatorname{bal}^{*}(n, G)<\binom{n}{2}$.

Counting bicolored edges
If $|R|,|B|=\frac{1}{2}\binom{n}{2}+b$:

First results

Proposition

If $\operatorname{bal}(n, G)$ exists, then $\operatorname{bal}^{*}(n, G)=\operatorname{bal}(n, G)$.
Otherwise, $\frac{1}{2}\binom{n}{2} \leq \operatorname{bal}^{*}(n, G)<\binom{n}{2}$.
Counting bicolored edges
If $|R|,|B|=\frac{1}{2}\binom{n}{2}+b$:

Proposition

If k bicolored edges guarantee a balanced copy of G, then $\operatorname{bal}^{*}(n, G) \leq \frac{1}{2}\binom{n}{2}+\left\lceil\frac{k}{2}\right\rceil-1$.

A general upper bound

- $\mathscr{H}(G)=\left\{H \leq G \left\lvert\, e(H)=\left\lfloor\frac{e(G)}{2}\right\rfloor\right., H\right.$ with no isolated vertex $\}$

A general upper bound

- $\mathscr{H}(G)=\left\{H \leq G \left\lvert\, e(H)=\left\lfloor\frac{e(G)}{2}\right\rfloor\right., H\right.$ with no isolated vertex $\}$

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
For every $G(V, E)$ and $n \geq|V|$, we have

$$
\text { bal }^{*}(n, G) \leq \frac{1}{2}\binom{n}{2}+\left\lceil\frac{\mathrm{ex}(n, \mathscr{H}(G))}{2}\right\rceil .
$$

A general upper bound

- $\mathscr{H}(G)=\left\{H \leq G \left\lvert\, e(H)=\left\lfloor\frac{e(G)}{2}\right\rfloor\right., H\right.$ with no isolated vertex $\}$

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
For every $G(V, E)$ and $n \geq|V|$, we have

$$
\mathrm{bal}^{*}(n, G) \leq \frac{1}{2}\binom{n}{2}+\left\lceil\frac{\mathrm{ex}(n, \mathscr{H}(G))}{2}\right\rceil .
$$

Proof

If there are at least $\operatorname{ex}(n, \mathscr{H}(G))+1$ bicolored edges, we can select them, complete the copy of G, and assign the colors of the bicolored edges to balance the copy.

Applying the upper bound

Applying the upper bound

Cycles $C_{4 k+2}$

- $\mathscr{H}\left(C_{4 k+2}\right)=$ linear forests of size $2 k+1$

Applying the upper bound

Cycles $C_{4 k+2}$

- $\mathscr{H}\left(C_{4 k+2}\right)=$ linear forests of size $2 k+1$
- bal* $\left(n, C_{4 k+2}\right) \leq \frac{1}{2}\binom{n}{2}+\frac{k n}{2}+\mathscr{O}(1)$ [Ning, Wang, 2020]

Applying the upper bound

Cycles $C_{4 k+2}$

- $\mathscr{H}\left(C_{4 k+2}\right)=$ linear forests of size $2 k+1$
- bal $\left(n, C_{4 k+2}\right) \leq \frac{1}{2}\binom{n}{2}+\frac{k n}{2}+\mathscr{O}(1)$ [Ning, Wang, 2020]
K_{5}

Applying the upper bound

Cycles $C_{4 k+2}$

- $\mathscr{H}\left(C_{4 k+2}\right)=$ linear forests of size $2 k+1$
- bal ${ }^{*}\left(n, C_{4 k+2}\right) \leq \frac{1}{2}\binom{n}{2}+\frac{k n}{2}+\mathscr{O}(1)$ [Ning, Wang, 2020]
K_{5}

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
For every integer $n \geq 5$, ex $\left(n, \mathscr{H}\left(K_{5}\right)\right)=\operatorname{ex}\left(n,\left\{C_{3}, C_{4}, C_{5}\right\}\right)$.

Applying the upper bound

Cycles $C_{4 k+2}$

- $\mathscr{H}\left(C_{4 k+2}\right)=$ linear forests of size $2 k+1$
- bal ${ }^{*}\left(n, C_{4 k+2}\right) \leq \frac{1}{2}\binom{n}{2}+\frac{k n}{2}+\mathscr{O}(1)$ [Ning, Wang, 2020]
K_{5}
- $H\left(K_{5}\right)=\begin{array}{lllll}0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
For every integer $n \geq 5$, ex $\left(n, \mathscr{H}\left(K_{5}\right)\right)=\operatorname{ex}\left(n,\left\{C_{3}, C_{4}, C_{5}\right\}\right)$.

- bal $*\left(n, K_{5}\right) \leq \frac{1}{2}\binom{n}{2}+(1+\epsilon) \frac{1}{4 \sqrt{2}} n^{\frac{3}{2}}$ [Füredi, Simonovits, 2013]

Applying the upper bound

Cycles $C_{4 k+2}$

- $\mathscr{H}\left(C_{4 k+2}\right)=$ linear forests of size $2 k+1$
- bal ${ }^{*}\left(n, C_{4 k+2}\right) \leq \frac{1}{2}\binom{n}{2}+\frac{k n}{2}+\mathscr{O}(1)$ [Ning, Wang, 2020]
K_{5}
- $H\left(K_{5}\right)=\begin{array}{lllll}0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
For every integer $n \geq 5$, ex $\left(n, \mathscr{H}\left(K_{5}\right)\right)=\operatorname{ex}\left(n,\left\{C_{3}, C_{4}, C_{5}\right\}\right)$.

- bal $*\left(n, K_{5}\right) \leq \frac{1}{2}\binom{n}{2}+(1+\epsilon) \frac{1}{4 \sqrt{2}} n^{\frac{3}{2}}$ [Füredi, Simonovits, 2013]
\rightarrow Quality of this bound?

Generalized balancing number of $C_{4 k+2}$

Generalized balancing number of $C_{4 k+2}$

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
$\operatorname{bal}^{*}\left(n, C_{4 k+2}\right)=\frac{1}{2}\binom{n}{2}$

Generalized balancing number of $C_{4 k+2}$

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
bal* $\left(n, C_{4 k+2}\right)=\frac{1}{2}\binom{n}{2}$

Proof idea

1. Assume $|R|,|B|>\frac{1}{2}\binom{n}{2}$: there are at least 2 bicolored edges.

Generalized balancing number of $C_{4 k+2}$

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
bal ${ }^{*}\left(n, C_{4 k+2}\right)=\frac{1}{2}\binom{n}{2}$

Proof idea

1. Assume $|R|,|B|>\frac{1}{2}\binom{n}{2}$: there are at least 2 bicolored edges.
2. Let $t \geq 3 k+1$. We find a type A or type B copy of $K_{2 t}$.

Generalized balancing number of $C_{4 k+2}$

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
bal ${ }^{*}\left(n, C_{4 k+2}\right)=\frac{1}{2}\binom{n}{2}$

Proof idea

1. Assume $|R|,|B|>\frac{1}{2}\binom{n}{2}$: there are at least 2 bicolored edges.
2. Let $t \geq 3 k+1$. We find a type A or type B copy of $K_{2 t}$.

3. If type A copy: balanced copy of $C_{4 k+2}$.

Generalized balancing number of $C_{4 k+2}$

Theorem (D., Eslava, Hansberg, Ventura, 2020+)
bal ${ }^{*}\left(n, C_{4 k+2}\right)=\frac{1}{2}\binom{n}{2}$

Proof idea

1. Assume $|R|,|B|>\frac{1}{2}\binom{n}{2}$: there are at least 2 bicolored edges.
2. Let $t \geq 3 k+1$. We find a type A or type B copy of $K_{2 t}$.

3. If type A copy: balanced copy of $C_{4 k+2}$.
4. If type B copy: wherever the bicolored edge is, we can find a balanced copy of $C_{4 k+2}$.

Lower bound for K_{5}

Lower bound for K_{5}

Proposition

Let $c=\left(\frac{\sqrt{2}-1}{2 \sqrt{2}}\right)^{\frac{5}{2}}$. We have bal $*\left(n, K_{5}\right) \geq \frac{1}{2}\binom{n}{2}+(1-\epsilon) c n^{\frac{3}{2}}$.

Lower bound for K_{5}

Proposition

Let $c=\left(\frac{\sqrt{2}-1}{2 \sqrt{2}}\right)^{\frac{5}{2}}$. We have bal $*\left(n, K_{5}\right) \geq \frac{1}{2}\binom{n}{2}+(1-\epsilon) c n^{\frac{3}{2}}$.

Proof
We build a 2-edge-covering of K_{n} with no balanced K_{5}.

Lower bound for K_{5}

Proposition

Let $c=\left(\frac{\sqrt{2}-1}{2 \sqrt{2}}\right)^{\frac{5}{2}}$. We have bal ${ }^{*}\left(n, K_{5}\right) \geq \frac{1}{2}\binom{n}{2}+(1-\epsilon) c n^{\frac{3}{2}}$.

Proof

We build a 2-edge-covering of K_{n} with no balanced K_{5}.

Lower bound for K_{5}

Proposition

Let $c=\left(\frac{\sqrt{2}-1}{2 \sqrt{2}}\right)^{\frac{5}{2}}$. We have bal ${ }^{*}\left(n, K_{5}\right) \geq \frac{1}{2}\binom{n}{2}+(1-\epsilon) c n^{\frac{3}{2}}$.

Proof

We build a 2-edge-covering of K_{n} with no balanced K_{5}.

Lower bound for K_{5}

Proposition

Let $c=\left(\frac{\sqrt{2}-1}{2 \sqrt{2}}\right)^{\frac{5}{2}}$. We have bal ${ }^{*}\left(n, K_{5}\right) \geq \frac{1}{2}\binom{n}{2}+(1-\epsilon) c n^{\frac{3}{2}}$.

Proof

We build a 2-edge-covering of K_{n} with no balanced K_{5}.

Then, we prove $|R|,|B|>\frac{1}{2}\binom{n}{2}+(1-\epsilon) c n^{\frac{3}{2}}$.

Quality of the general upper bound

Quality of the general upper bound

Cycles $C_{4 k+2}$

- General upper bound: bal ${ }^{*}\left(n, C_{4 k+2}\right) \leq \frac{1}{2}\binom{n}{2}+\frac{k n}{2}+\mathscr{O}(1)$
- Exact value: bal ${ }^{*}\left(n, C_{4 k+2}\right)=\frac{1}{2}\binom{n}{2}$

Quality of the general upper bound

Cycles $C_{4 k+2}$

- General upper bound: bal ${ }^{*}\left(n, C_{4 k+2}\right) \leq \frac{1}{2}\binom{n}{2}+\frac{k n}{2}+\mathscr{O}(1)$
- Exact value: bal ${ }^{*}\left(n, C_{4 k+2}\right)=\frac{1}{2}\binom{n}{2}$
K_{5}
- General upper bound: bal ${ }^{*}\left(n, K_{5}\right) \leq \frac{1}{2}\binom{n}{2}+(1+\epsilon) \frac{1}{4 \sqrt{2}} n^{\frac{3}{2}}$
- Lower bound: bal ${ }^{*}\left(n, K_{5}\right) \geq \frac{1}{2}\binom{n}{2}+(1-\epsilon)\left(\frac{\sqrt{2}-1}{2 \sqrt{2}}\right)^{\frac{5}{2}} n^{\frac{3}{2}}$

Quality of the general upper bound

Cycles $C_{4 k+2}$

- General upper bound: bal ${ }^{*}\left(n, C_{4 k+2}\right) \leq \frac{1}{2}\binom{n}{2}+\frac{k n}{2}+\mathscr{O}(1)$
- Exact value: bal ${ }^{*}\left(n, C_{4 k+2}\right)=\frac{1}{2}\binom{n}{2}$
K_{5}
- General upper bound: bal ${ }^{*}\left(n, K_{5}\right) \leq \frac{1}{2}\binom{n}{2}+(1+\varepsilon) \frac{1}{4 \sqrt{2}} n^{n^{\frac{3}{2}}}$
- Lower bound: bal ${ }^{*}\left(n, K_{5}\right) \geq \frac{1}{2}\binom{n}{2}+(1-\epsilon)\left(\frac{\sqrt{2}-1}{2 \sqrt{2}}\right)^{\frac{5}{2}} n^{\frac{3}{2}}$

Quality of the general upper bound

Cycles $C_{4 k+2}$

- General upper bound: bal ${ }^{*}\left(n, C_{4 k+2}\right) \leq \frac{1}{2}\binom{n}{2}+\frac{k n}{2}+\mathscr{O}(1)$
- Exact value: bal ${ }^{*}\left(n, C_{4 k+2}\right)=\frac{1}{2}\binom{n}{2}$
K_{5}
- General upper bound: bal ${ }^{*}\left(n, K_{5}\right) \leq \frac{1}{2}\binom{n}{2}+(1+\epsilon) \frac{1}{4 \sqrt{2}} n^{\frac{3}{2}}$
- Lower bound: bal ${ }^{*}\left(n, K_{5}\right) \geq \frac{1}{2}\binom{n}{2}+(1-\epsilon)\left(\frac{\sqrt{2}-1}{2 \sqrt{2}}\right)^{\frac{5}{2}} n^{\frac{3}{2}}$
\rightarrow There are differences among non-balanceable graphs.

Final words

Conclusion

- Balanceability results, study of $\operatorname{bal}(n, G)$
- Introduction of bal* (n, G) to study non-balanceable graphs

Final words

Conclusion

- Balanceability results, study of $\operatorname{bal}(n, G)$
- Introduction of bal* (n, G) to study non-balanceable graphs

Open questions

- Complexity
- More graph classes
- More colors

Final words

Conclusion

- Balanceability results, study of $\operatorname{bal}(n, G)$
- Introduction of bal* (n, G) to study non-balanceable graphs

Open questions

- Complexity
- More graph classes
- More colors

