A strengthening of the Murty-Simon Conjecture on diameter 2 critical graphs

Antoine Dailly¹, Florent Foucaud², Adriana Hansberg³

¹Université Lyon 1, LIRIS, Lyon, France
 ²LIMOS, Université Clermont Auvergne, Aubière, France
 ³Instituto de Matemáticas, UNAM, Mexico

Diameter The diameter of a graph is the highest distance between two vertices.

Diameter The diameter of a graph is the highest distance between two vertices.

Diameter

The diameter of a graph is the highest distance between two vertices.

Diameter *d* critical graphs

A graph is diameter d critical (or DdC) if:

- 1. It has diameter d;
- 2. Deleting any edge increases the diameter.

Diameter

The diameter of a graph is the highest distance between two vertices.

Diameter *d* critical graphs

A graph is diameter d critical (or DdC) if:

- 1. It has diameter d;
- 2. Deleting any edge increases the diameter.

Diameter

The diameter of a graph is the highest distance between two vertices.

Diameter *d* critical graphs

A graph is diameter d critical (or DdC) if:

- 1. It has diameter d;
- 2. Deleting any edge increases the diameter.

Diameter

The diameter of a graph is the highest distance between two vertices.

Diameter *d* critical graphs

A graph is diameter d critical (or DdC) if:

- 1. It has diameter d;
- 2. Deleting any edge increases the diameter.

Diameter 2 critical

Several well-known graphs:

Several well-known graphs:

Complete bipartite graphs

Clebsch Graph

Chvàtal Graph

Several well-known graphs:

Complete bipartite graphs

Clebsch Graph

Chvàtal Graph

... and many others!

Theorem (Mantel, 1907)

A triangle-free graph of order *n* and size *m* verifies $m \leq \lfloor \frac{n^2}{4} \rfloor$. The extremal graph is $\mathcal{K}_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$.

Theorem (Mantel, 1907)

A triangle-free graph of order *n* and size *m* verifies $m \leq \lfloor \frac{n^2}{4} \rfloor$. The extremal graph is $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$.

Diameter 2 triangle-free graphs \Leftrightarrow D2C triangle-free graphs

Theorem (Mantel, 1907)

A triangle-free graph of order *n* and size *m* verifies $m \leq \lfloor \frac{n^2}{4} \rfloor$. The extremal graph is $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$.

Diameter 2 triangle-free graphs \Leftrightarrow D2C triangle-free graphs

•
$$m < \frac{3n(n-1)}{8} = 0.375(n^2 - n)$$
 (Plesník, 1975)

•
$$m < \frac{3n(n-1)}{8} = 0.375(n^2 - n)$$
 (Plesník, 1975)
• $m < \frac{1+\sqrt{5}}{12}n^2 < 0.27n^2$ (Cacceta, Häggkvist, 1979)

•
$$m < \frac{3n(n-1)}{8} = 0.375(n^2 - n)$$
 (Plesník, 1975)
• $m < \frac{1+\sqrt{5}}{12}n^2 < 0.27n^2$ (Cacceta, Häggkvist, 1979)
• $m < 0.2532n^2$ (Fan, 1987)

Conjecture (Murty, Simon, Ore, Plesník, 1970s) A D2C graph of order *n* and size *m* verifies $m \leq \lfloor \frac{n^2}{4} \rfloor$. The extremal graph is $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$.

$$m < \frac{3n(n-1)}{8} = 0.375(n^2 - n) \text{ (Plesník, 1975)}$$
 $m < \frac{1+\sqrt{5}}{12}n^2 < 0.27n^2 \text{ (Cacceta, Häggkvist, 1979)}$
 $m < 0.2532n^2 \text{ (Fan, 1987)}$

The conjecture holds for:

▶
$$n \le 24$$
, $n = 26$ (Fan, 1987)

Conjecture (Murty, Simon, Ore, Plesník, 1970s) A D2C graph of order *n* and size *m* verifies $m \leq \lfloor \frac{n^2}{4} \rfloor$. The extremal graph is $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$.

▶
$$m < \frac{3n(n-1)}{8} = 0.375(n^2 - n)$$
 (Plesník, 1975)
▶ $m < \frac{1+\sqrt{5}}{12}n^2 < 0.27n^2$ (Cacceta, Häggkvist, 1979)
▶ $m < 0.2532n^2$ (Fan, 1987)

The conjecture holds for:

▶
$$n \le 24$$
, $n = 26$ (Fan, 1987)

•
$$n \ge 2^{2^{...^2}}$$
size 10¹⁴ (Füredi, 1992)

Conjecture (Murty, Simon, Ore, Plesník, 1970s) A D2C graph of order *n* and size *m* verifies $m \leq \lfloor \frac{n^2}{4} \rfloor$. The extremal graph is $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$.

▶
$$m < \frac{3n(n-1)}{8} = 0.375(n^2 - n)$$
 (Plesník, 1975)
▶ $m < \frac{1+\sqrt{5}}{12}n^2 < 0.27n^2$ (Cacceta, Häggkvist, 1979)
▶ $m < 0.2532n^2$ (Fan, 1987)

The conjecture holds for:

▶
$$n \le 24$$
, $n = 26$ (Fan, 1987)

•
$$n \ge 2^{2^{...}}^{3}$$
 size 10¹⁴ (Füredi, 1992)

• $\Delta \ge 0.6756 n$ (Jabalameli *et al.*, 2016)

Conjecture (Murty, Simon, Ore, Plesník, 1970s) A D2C graph of order *n* and size *m* verifies $m \leq \lfloor \frac{n^2}{4} \rfloor$. The extremal graph is $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$.

The conjecture holds for:

▶
$$n \le 24$$
, $n = 26$ (Fan, 1987)

•
$$n \ge 2^{2^{...}}^{3}$$
 size 10¹⁴ (Füredi, 1992)

- $\Delta \ge 0.6756 n$ (Jabalameli *et al.*, 2016)
- With a dominating edge (Hanson and Wang, 2003, Haynes et al., 2011, Wang 2012)

The Murty-Simon Conjecture: a linear strengthening?

The Murty-Simon Conjecture: a linear strengthening?

Claim (Füredi, 1992)

A non-bipartite D2C graph of order $n \ge n_0$ and size *m* verifies $m \le \lfloor \frac{(n-1)^2}{4} \rfloor + 1 \approx \lfloor \frac{n^2}{4} - \frac{n}{2} \rfloor$. The extremal graph is obtained by subdividing an edge of $K_{\lfloor \frac{n-1}{2} \rfloor, \lceil \frac{n-1}{2} \rceil}$.

The Murty-Simon Conjecture: a linear strengthening?

Claim (Füredi, 1992)

A non-bipartite D2C graph of order $n \ge n_0$ and size *m* verifies $m \le \lfloor \frac{(n-1)^2}{4} \rfloor + 1 \approx \lfloor \frac{n^2}{4} - \frac{n}{2} \rfloor$. The extremal graph is obtained by subdividing an edge of $K_{\lfloor \frac{n-1}{2} \rfloor, \lceil \frac{n-1}{2} \rceil}$.

Theorem (Balbuena et al., 2015)

A triangle-free non-bipartite D2C graph of order *n* and size *m* verifies $m \leq \lfloor \frac{(n-1)^2}{4} \rfloor + 1$. The extremal graphs are some inflations of C_5 .

Conjecture: linear strengthening (Balbuena *et al.*, 2015) A non-bipartite D2C graph of order n > 6 and size m verifies $m \le \lfloor \frac{(n-1)^2}{4} \rfloor + 1$. If $n \ge 10$, the extremal graphs are some inflations of C_5 .

Conjecture: linear strengthening (Balbuena et al., 2015)

A non-bipartite D2C graph of order n > 6 and size m verifies $m \le \lfloor \frac{(n-1)^2}{4} \rfloor + 1$. If $n \ge 10$, the extremal graphs are some inflations of C_5 .

Conjecture: constant strengthening (D., Foucaud, Hansberg, 2018)

Let *c* be a positive integer, then there is a rank n_0 such that any non-bipartite D2C graph of order $n \ge n_0$ and size *m* verifies $m < \lfloor \frac{n^2}{4} \rfloor - c$.

Conjecture: linear strengthening (Balbuena et al., 2015)

A non-bipartite D2C graph of order n > 6 and size m verifies $m \le \lfloor \frac{(n-1)^2}{4} \rfloor + 1$. If $n \ge 10$, the extremal graphs are some inflations of C_5 .

Conjecture: constant strengthening (D., Foucaud, Hansberg, 2018)

Let *c* be a positive integer, then there is a rank n_0 such that any non-bipartite D2C graph of order $n \ge n_0$ and size *m* verifies $m < \lfloor \frac{n^2}{4} \rfloor - c$.

Asymptotical since small graphs may not verify the strengthened conjectures.

Conjecture: linear strengthening (Balbuena et al., 2015)

A non-bipartite D2C graph of order n > 6 and size m verifies $m \le \lfloor \frac{(n-1)^2}{4} \rfloor + 1$. If $n \ge 10$, the extremal graphs are some inflations of C_5 .

Conjecture: constant strengthening (D., Foucaud, Hansberg, 2018)

Let *c* be a positive integer, then there is a rank n_0 such that any non-bipartite D2C graph of order $n \ge n_0$ and size *m* verifies $m < \lfloor \frac{n^2}{4} \rfloor - c$.

Asymptotical since small graphs may not verify the strengthened conjectures.

$$H_5 = \bigcirc \bigcirc \bigcirc \bigcirc \qquad n = 6 \\ m = 8 \Rightarrow \qquad m > \lfloor \frac{(n-1)^2}{4} \rfloor + 1 = 7$$

Conjecture: linear strengthening (Balbuena et al., 2015)

A non-bipartite D2C graph of order n > 6 and size m verifies $m \le \lfloor \frac{(n-1)^2}{4} \rfloor + 1$. If $n \ge 10$, the extremal graphs are some inflations of C_5 .

Conjecture: constant strengthening (D., Foucaud, Hansberg, 2018)

Let *c* be a positive integer, then there is a rank n_0 such that any non-bipartite D2C graph of order $n \ge n_0$ and size *m* verifies $m < \lfloor \frac{n^2}{4} \rfloor - c$.

Asymptotical since small graphs may not verify the strengthened conjectures.

$$H_5 = \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \qquad n = 6 \\ m = 8 \qquad \Rightarrow \qquad m > \lfloor \frac{(n-1)^2}{4} \rfloor + 1 = 7 \\ m \ge \lfloor \frac{n^2}{4} \rfloor - c = 9 - c \text{ if } c \ge 1$$

Our main result

Theorem (D., Foucaud, Hansberg, 2018) Let *G* be a non-bipartite D2C graph with a dominating edge of order *n* and size *m*. If $G \neq H_5$ then $m < \lfloor \frac{n^2}{4} \rfloor - 1$.

Sketch of the proof

Theorem (D., Foucaud, Hansberg, 2018)

Let *G* be a non-bipartite D2C graph with a dominating edge of order *n* and size *m*. If $G \neq H_5$ then $m < \lfloor \frac{n^2}{4} \rfloor - 1$.

Sketch of the proof

Theorem (D., Foucaud, Hansberg, 2018)

Let G be a non-bipartite D2C graph with a dominating edge of order n and size m. If $G \neq H_5$ then $m < \lfloor \frac{n^2}{4} \rfloor - 1$.

Sketch

1. Partition the vertices in two sets A and B.

Sketch of the proof

Theorem (D., Foucaud, Hansberg, 2018)

Let G be a non-bipartite D2C graph with a dominating edge of order n and size m. If $G \neq H_5$ then $m < \lfloor \frac{n^2}{4} \rfloor - 1$.

Sketch

- 1. Partition the vertices in two sets A and B.
- 2. Assign every edge in A or B to a non-edge between A and B.

Sketch of the proof

Theorem (D., Foucaud, Hansberg, 2018)

Let G be a non-bipartite D2C graph with a dominating edge of order n and size m. If $G \neq H_5$ then $m < \lfloor \frac{n^2}{4} \rfloor - 1$.

Sketch

- 1. Partition the vertices in two sets A and B.
- 2. Assign every edge in A or B to a non-edge between A and B.
- 3. Find two non-assigned non-edges between A and B.

Definition

An edge e is critical for the vertices x and y if

Definition

An edge e is critical for the vertices x and y if e is part of the only path of length 1 or 2 between x and y.

Definition

An edge e is critical for the vertices x and y if e is part of the only path of length 1 or 2 between x and y.

Either e = xy and $N(x) \cap N(y) = \emptyset$;

Definition

An edge e is critical for the vertices x and y if e is part of the only path of length 1 or 2 between x and y.

Either e = xy and $N(x) \cap N(y) = \emptyset$;

Or $xy \notin E$, $N(x) \cap N(y) = \{z\}$ and $e \in \{xz, yz\}$.

Definition

An edge e is critical for the vertices x and y if e is part of the only path of length 1 or 2 between x and y.

Either e = xy and $N(x) \cap N(y) = \emptyset$;

Or $xy \notin E$, $N(x) \cap N(y) = \{z\}$ and $e \in \{xz, yz\}$.

 \Rightarrow In a D2C graph, every edge is critical for some pair of vertices

Lemma Let xy be an edge in A.

Lemma

Let xy be an edge in A. It is not critical for x and y since they have v as a common neighbour.

Lemma

Let xy be an edge in A. It is not critical for x and y since they have v as a common neighbour. Thus it is critical for y and z with $z \in B \cap N(x)$.

Lemma

Let xy be an edge in A. It is not critical for x and y since they have v as a common neighbour. Thus it is critical for y and z with $z \in B \cap N(x)$. We set $f(xy) = \overline{yz}$.

Lemma

Let xy be an edge in A. It is not critical for x and y since they have v as a common neighbour. Thus it is critical for y and z with $z \in B \cap N(x)$. We set $f(xy) = \overline{yz}$.

Lemma The function *f* is injective.

Lemma

Let xy be an edge in A. It is not critical for x and y since they have v as a common neighbour. Thus it is critical for y and z with $z \in B \cap N(x)$. We set $f(xy) = \overline{yz}$.

Lemma

The function f is injective. Proof by contradiction.

Lemma

Let xy be an edge in A. It is not critical for x and y since they have v as a common neighbour. Thus it is critical for y and z with $z \in B \cap N(x)$. We set $f(xy) = \overline{yz}$.

Lemma

The function f is injective. Proof by contradiction.

Lemma

A non-edge between A and B with no preimage by f is called f-free. Let free(f) be the number of f-free non-edges.

Lemma

A non-edge between A and B with no preimage by f is called f-free. Let free(f) be the number of f-free non-edges.

Lemma

A non-edge between A and B with no preimage by f is called f-free. Let free(f) be the number of f-free non-edges.

Lemma

A non-edge between A and B with no preimage by f is called f-free. Let free(f) be the number of f-free non-edges. There are $\frac{n^2 - ||A| - |B||^2}{4} - \text{free}(f) \text{ edges in the graph.}$

Assume by contradiction that G is non-bipartite, D2C, with a dominating edge uv, is not H_5 and has at least $\frac{n^2}{4} - 1$ edges.

Assume by contradiction that G is non-bipartite, D2C, with a dominating edge uv, is not H_5 and has at least $\frac{n^2}{4} - 1$ edges.

Fact to contradict: There is at most one f-free non-edge in G

Assume by contradiction that G is non-bipartite, D2C, with a dominating edge uv, is not H_5 and has at least $\frac{n^2}{4} - 1$ edges.

Fact to contradict: There is at most one f-free non-edge in G

Lemma

- 1. $N(u) \cap N(v) = \emptyset$
- 2. uv is critical for u and v only
- 3. There is at least one edge in A or B

Defining an orientation of the internal edges

Definition If $f(xy) = \overline{yz}$,

Defining an orientation of the internal edges

Definition If $f(xy) = \overline{yz}$, we orient xy from x to y. This defines an f-orientation.

Lemma

There is no directed cycle.

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma Let \overrightarrow{xy} be an arc in A such that no f-free non-edge is incident with x or y.

Lemma

Let \overrightarrow{xy} be an arc in A such that no f-free non-edge is incident with x or y. Then $N(x) \cap B = (N(y) \cap B)$.

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Properties of the *f*-orientation

Lemma

Let \overrightarrow{xy} be an arc in A such that no f-free non-edge is incident with x or y. Then $\exists ! z \in B$ such that $N(x) \cap B = (N(y) \cap B) \cup \{z\}$. Proof by contradiction.

Lemma

1. Let s be a source. There is at least one f-free non-edge incident with a vertex in $N^+[s]$.

Properties of the *f*-orientation

Lemma

Let \overrightarrow{xy} be an arc in A such that no f-free non-edge is incident with x or y. Then $\exists ! z \in B$ such that $N(x) \cap B = (N(y) \cap B) \cup \{z\}$. Proof by contradiction.

Lemma

- 1. Let s be a source. There is at least one f-free non-edge incident with a vertex in $N^+[s]$.
- Let t be a sink. There is at least one f-free non-edge incident with a vertex in N⁻[t].

Fact to contradict: there is $\leq 1 f$ -free non-edge

Fact to contradict: there is $\leq 1 f$ -free non-edge

Consequences of the previous lemmas

1. Only one nontrivial component in \boldsymbol{A} and \boldsymbol{B}

Fact to contradict: there is $\leq 1 f$ -free non-edge

Consequences of the previous lemmas

- 1. Only one nontrivial component in A and B
- 2. The nontrivial component has diameter ≥ 3

Fact to contradict: there is $\leq 1 f$ -free non-edge

Consequences of the previous lemmas

- 1. Only one nontrivial component in A and B
- 2. The nontrivial component has diameter \geq 3
- 3. The f-free non-edge is incident with a vertex r such that:
 - 3.1 For all source s, $r \in N^+[s]$
 - 3.2 For all sink $t, r \in N^{-}[t]$

Fact to contradict: there is $\leq 1 f$ -free non-edge

Consequences of the previous lemmas

- 1. Only one nontrivial component in A and B
- 2. The nontrivial component has diameter \geq 3
- 3. The f-free non-edge is incident with a vertex r such that:

3.1 For all source $s, r \in N^+[s]$

3.2 For all sink $t, r \in N^{-}[t]$

Lemma

1. r is either a sink or the only inneighbour of all sinks.

Lemma

1. r is either a sink or the only inneighbour of all sinks.

Lemma

- 1. r is either a sink or the only inneighbour of all sinks.
- 2. There is only one source.

Fact to contradict: there is $\leq 1 f$ -free non-edge

Fact to contradict: there is $\leq 1 f$ -free non-edge

The last steps

1. s has an outneighbour distinct from r

Fact to contradict: there is $\leq 1 f$ -free non-edge

- 1. s has an outneighbour distinct from r
- 2. *s* has a non-neighbour $y_1 \in B$. No successor of *s* and predecessor of *r* can be adjacent to y_1 .

Fact to contradict: there is $\leq 1 f$ -free non-edge

- 1. s has an outneighbour distinct from r
- 2. *s* has a non-neighbour $y_1 \in B$. No successor of *s* and predecessor of *r* can be adjacent to y_1 .
- 3. $\overline{sy_1}$ is not *f*-free; its preimage is in *B* since *s* is a source

Fact to contradict: there is $\leq 1 f$ -free non-edge

- 1. s has an outneighbour distinct from r
- 2. *s* has a non-neighbour $y_1 \in B$. No successor of *s* and predecessor of *r* can be adjacent to y_1 .
- 3. $\overline{sy_1}$ is not *f*-free; its preimage is in *B* since *s* is a source
- 4. $\overline{xy_1}$ has a preimage by f, which cannot be y_1z with $z \in B$ since otherwise $z \in N(s)$

Fact to contradict: there is $\leq 1 f$ -free non-edge

- 1. s has an outneighbour distinct from r
- 2. *s* has a non-neighbour $y_1 \in B$. No successor of *s* and predecessor of *r* can be adjacent to y_1 .
- 3. $\overline{sy_1}$ is not *f*-free; its preimage is in *B* since *s* is a source
- 4. $\overline{xy_1}$ has a preimage by f, which cannot be y_1z with $z \in B$ since otherwise $z \in N(s)$

Fact to contradict: there is $\leq 1 f$ -free non-edge

- 1. s has an outneighbour distinct from r
- 2. *s* has a non-neighbour $y_1 \in B$. No successor of *s* and predecessor of *r* can be adjacent to y_1 .
- 3. $\overline{sy_1}$ is not *f*-free; its preimage is in *B* since *s* is a source
- 4. $\overline{xy_1}$ has a preimage by f, which cannot be y_1z with $z \in B$ since otherwise $z \in N(s)$
- 5. z is a successor of s and a predecessor of r: contradiction!

1. Strengthening the Murty-Simon Conjecture in two ways: linear and constant

- 1. Strengthening the Murty-Simon Conjecture in two ways: linear and constant
- 2. Proving the constant strengthening for D2C graphs with a dominating edge

- 1. Strengthening the Murty-Simon Conjecture in two ways: linear and constant
- 2. Proving the constant strengthening for D2C graphs with a dominating edge

Future research

1. Improving the constant bound for this family

- 1. Strengthening the Murty-Simon Conjecture in two ways: linear and constant
- 2. Proving the constant strengthening for D2C graphs with a dominating edge

Future research

1. Improving the constant bound for this family \rightarrow Difficulty: most properties of the *f*-orientation are local

- 1. Strengthening the Murty-Simon Conjecture in two ways: linear and constant
- 2. Proving the constant strengthening for D2C graphs with a dominating edge

Future research

- 1. Improving the constant bound for this family \rightarrow Difficulty: most properties of the *f*-orientation are local
- 2. Studying other families of D2C graphs

- 1. Strengthening the Murty-Simon Conjecture in two ways: linear and constant
- 2. Proving the constant strengthening for D2C graphs with a dominating edge

Future research

- 1. Improving the constant bound for this family \rightarrow Difficulty: most properties of the *f*-orientation are local
- 2. Studying other families of D2C graphs
- 3. Reaching for asymptotic results

- 1. Strengthening the Murty-Simon Conjecture in two ways: linear and constant
- 2. Proving the constant strengthening for D2C graphs with a dominating edge

Future research

- 1. Improving the constant bound for this family \rightarrow Difficulty: most properties of the *f*-orientation are local
- 2. Studying other families of D2C graphs
- 3. Reaching for asymptotic results

