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A D2C graph of order n and size m verifies m < [ - J The
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> m< M = 0.375(n? — n) (Plesnik, 1975)
> m< 1+*f n? < 0.27n? (Cacceta, Haggkvist, 1979)
> m< 0.253.2n2 (Fan, 1987)

The conjecture holds for:
» n <24, n=26 (Fan, 1987)

2
> n>22 } 190" (Fiiredi, 1992)

» A > 0.6756n (Jabalameli et al., 2016)

» With a dominating edge (Hanson and Wang, 2003, Haynes et
al., 2011, Wang 2012)
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Claim (Firedi, 1992)

A non-bipartite D2C graph of order n > ng and size m verifies
2
m < L@j +1x~ L"{ — 5. The extremal graph is obtained by

subdividing an edge of KL%IJ”—%I].

Theorem (Balbuena et al., 2015)

A triangle-free non-bipartite D2C graph of order n and size m

verifies m < L%J + 1. The extremal graphs are some inflations
of C5.
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Our main result

Theorem (D., Foucaud, Hansberg, 2018)

Let G be a non-bipartite D2C graph with a 2dominating edge of
order n and size m. If G # Hs then m < [ 7| — 1.
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Sketch of the proof

Theorem (D., Foucaud, Hansberg, 2018)

Let G be a non-bipartite D2C graph with a dominating edge of
order n and size m. If G # Hs then m < {%J —1.
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Sketch of the proof

Theorem (D., Foucaud, Hansberg, 2018)

Let G be a non-bipartite D2C graph with a dominating edge of
2
order n and size m. If G # Hs then m < || — 1.

Sketch
1. Partition the vertices in two sets A and B.

2. Assign every edge in A or B to a non-edge between A and B.
3. Find two non-assigned non-edges between A and B.
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Assigning internal edges to external non-edges

Definition
An edge e is critical for the vertices x and y if e is part of the only
path of length 1 or 2 between x and y.

Either e = xy and N(x) N N(y) = 0;

e
XQ QY

A A
ONC

Or xy ¢ E, N()NN(y) ={z} and e € {xz,yz}.

= In a D2C graph, every edge is critical for some pair of vertices
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Non-assigned non-edges?

Lemma
A non-edge between A and B with no preimage by f is called
f-free. Let free(f) be the number of f-free non-edges.

r—|1a1-18]|° .
There are ———— — free(f) edges in the graph.
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dominating edge uv, is not Hs and has at least - — 1 edges.
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To the next step

Assume by contradiction that G is non-bipartite, D2C, with a
2
dominating edge uv, is not Hs and has at least - — 1 edges.

Fact to contradict: There is at most one f-free non-edge in G

Lemma
1. N(u)n'N(v) =10
2. uv is critical for u and v only

3. There is at least one edge in Aor B
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Defining an orientation of the internal edges

Definition
If F(xy) = 7,
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Defining an orientation of the internal edges

Definition
If f(xy) =¥z, we orient xy from x to y. This defines an
f-orientation.
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Properties of the f-orientation

Lemma

Let _)>/ be an arc in A such that no f-free non-edge is incident with
or y. Then 3!z € B such that N(x)N B = (N(y) N B)U{z}.

Proof by contradiction.

Lemma
1. Let s be a source. There is at least one f-free non-edge
incident with a vertex in N*[s].

2. Let t be a sink. There is at least one f-free non-edge incident
with a vertex in N~ [1].
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Proving the contradiction

r=s=:s S1 Sk
f-free
f-free
t1 r=t
Lemma

1. r is either a sink or the only inneighbour of all sinks.
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Proving the contradiction

since the com-
ponent has
diameter > 3

Lemma

1. r is either a sink or the only inneighbour of all sinks.

2. There is only one source.
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The last steps

1. s has an outneighbour distinct from r

2. s has a non-neighbour y; € B. No successor of s and
predecessor of r can be adjacent to y;.

3. Syj is not f-free; its preimage is in B since s is a source

4. X1 has a preimage by f, which cannot be y;z with z € B
since otherwise z € N(5s)

5. z is a successor of s and a predecessor of r: contradiction!
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