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3Instituto de Matemáticas, UNAM, Mexico

ICGT, July 11, 2018
1/20



Diameter 2 critical graphs

Diameter
The diameter of a graph is the highest distance between two
vertices.

Diameter d critical graphs
A graph is diameter d critical (or DdC) if:

1. It has diameter d ;
2. Deleting any edge increases the diameter.

Diameter 2 critical
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Diameter 2 critical graphs

Several well-known graphs:

•••
•••

Complete bipartite graphs Clebsch Graph Chvàtal Graph

... and many others!
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The Murty-Simon Conjecture

Theorem (Mantel, 1907)
A triangle-free graph of order n and size m verifies m ≤ bn2

4 c. The
extremal graph is Kb n

2 c,d
n
2 e.

Diameter 2 triangle-free graphs ⇔ D2C triangle-free graphs

Conjecture (Murty, Simon, Ore, Plesńık, 1970s)
A D2C graph of order n and size m verifies m ≤ bn2

4 c. The
extremal graph is Kb n

2 c,d
n
2 e.
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A D2C graph of order n and size m verifies m ≤ bn2

4 c. The
extremal graph is Kb n

2 c,d
n
2 e.

4/20



The Murty-Simon Conjecture

Theorem (Mantel, 1907)
A triangle-free graph of order n and size m verifies m ≤ bn2

4 c. The
extremal graph is Kb n

2 c,d
n
2 e.

Diameter 2 triangle-free graphs ⇔ D2C triangle-free graphs

Conjecture (Murty, Simon, Ore, Plesńık, 1970s)
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The Murty-Simon Conjecture: history
Conjecture (Murty, Simon, Ore, Plesńık, 1970s)
A D2C graph of order n and size m verifies m ≤ bn2

4 c. The
extremal graph is Kb n

2 c,d
n
2 e.

I m < 3n(n−1)
8 = 0.375(n2 − n) (Plesńık, 1975)

I m < 1+
√

5
12 n2 < 0.27n2 (Cacceta, Häggkvist, 1979)

I m < 0.2532n2 (Fan, 1987)

The conjecture holds for:
I n ≤ 24, n = 26 (Fan, 1987)

I n ≥ 22. . .2
size 1014 (Füredi, 1992)

I ∆ ≥ 0.6756n (Jabalameli et al., 2016)
I With a dominating edge (Hanson and Wang, 2003, Haynes et

al., 2011, Wang 2012)
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size 1014 (Füredi, 1992)

I ∆ ≥ 0.6756n (Jabalameli et al., 2016)
I With a dominating edge (Hanson and Wang, 2003, Haynes et

al., 2011, Wang 2012)

5/20



The Murty-Simon Conjecture: history
Conjecture (Murty, Simon, Ore, Plesńık, 1970s)
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The Murty-Simon Conjecture: a linear strengthening?

Claim (Füredi, 1992)
A non-bipartite D2C graph of order n ≥ n0 and size m verifies
m ≤ b (n−1)2

4 c+ 1 ≈ bn2

4 −
n
2c. The extremal graph is obtained by

subdividing an edge of Kb n−1
2 c,d

n−1
2 e

.

•••
•••

I n−3
2

II

Theorem (Balbuena et al., 2015)
A triangle-free non-bipartite D2C graph of order n and size m
verifies m ≤ b (n−1)2

4 c+ 1. The extremal graphs are some inflations
of C5.
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Strengthening the Murty-Simon Conjecture

Conjecture: linear strengthening (Balbuena et al., 2015)
A non-bipartite D2C graph of order n > 6 and size m verifies
m ≤ b (n−1)2

4 c+ 1. If n ≥ 10, the extremal graphs are some
inflations of C5.
Conjecture: constant strengthening (D., Foucaud, Hansberg,
2018)
Let c be a positive integer, then there is a rank n0 such that any
non-bipartite D2C graph of order n ≥ n0 and size m verifies
m < bn2

4 c − c.

Asymptotical since small graphs may not verify the strengthened
conjectures.

H5 = n = 6
m = 8

⇒
m > b (n−1)2

4 c+ 1 = 7

m ≥ bn2

4 c − c = 9− c if c ≥ 1
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Our main result

Theorem (D., Foucaud, Hansberg, 2018)
Let G be a non-bipartite D2C graph with a dominating edge of
order n and size m. If G 6= H5 then m < bn2

4 c − 1.

8/20



Sketch of the proof
Theorem (D., Foucaud, Hansberg, 2018)
Let G be a non-bipartite D2C graph with a dominating edge of
order n and size m. If G 6= H5 then m < bn2

4 c − 1.

Sketch
1. Partition the vertices in two sets A and B.

2. Assign every edge in A or B to a non-edge between A and B.
3. Find two non-assigned non-edges between A and B.

N(u)
∩

N(v)

N(u)
\

N(v)

N(v)
\

N(u)

N(u)
∩

N(v)

N(v)
\

N(u)

N(u)
\

N(v)

A B

u v
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Assigning internal edges to external non-edges
Definition
An edge e is critical for the vertices x and y if

e is part of the only
path of length 1 or 2 between x and y .

Either e = xy and N(x) ∩ N(y) = ∅;
ex y

N(x) N(y)

Or xy /∈ E , N(x) ∩ N(y) = {z} and e ∈ {xz , yz}.

x y

zN(x) N(y)

e

⇒ In a D2C graph, every edge is critical for some pair of vertices
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Assign internal edges to external non-edges

Lemma
Let xy be an edge in A.

It is not critical for x and y since they
have v as a common neighbour. Thus it is critical for y and z with
z ∈ B ∩ N(x). We set f (xy) = yz .

A B

x

y

v
zz

f

w
f

w
f

Lemma
The function f is injective.

Proof by contradiction.
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Non-assigned non-edges?

Lemma
A non-edge between A and B with no preimage by f is called
f -free. Let free(f ) be the number of f -free non-edges.

There are n2−||A|−|B||2
4 − free(f ) edges in the graph.

A B

f -freef -freef -fre
e
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To the next step

Assume by contradiction that G is non-bipartite, D2C, with a
dominating edge uv , is not H5 and has at least n2

4 − 1 edges.

Fact to contradict: There is at most one f -free non-edge in G

Lemma
1. N(u) ∩ N(v) = ∅
2. uv is critical for u and v only
3. There is at least one edge in A or B
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Defining an orientation of the internal edges

Definition
If f (xy) = yz ,

we orient xy from x to y . This defines an
f -orientation.

A B

x

y z
f
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Properties of the f -orientation
Lemma
There is no directed cycle.

Proof by contradiction.

xi

xi+1

A B

yi
f

xj

xj+1

•
•
•

yj
f

f -free
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Properties of the f -orientation
Lemma
Let −→xy be an arc in A such that no f -free non-edge is incident with
x or y .

Then

∃!z ∈ B such that

N(x) ∩ B = (N(y) ∩ B)

∪ {z}

.
Proof by contradiction.

x

y

A B

•
•
•

z

w

f -free
z1

z2

f

f -free

Lemma
1. Let s be a source. There is at least one f -free non-edge

incident with a vertex in N+[s].

2. Let t be a sink. There is at least one f -free non-edge incident
with a vertex in N−[t].
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Proving the contradiction
Fact to contradict: there is ≤ 1 f -free non-edge

Consequences of the previous lemmas

1. Only one nontrivial component in A and B

2. The nontrivial component has diameter ≥ 3
3. The f -free non-edge is incident with a vertex r such that:

3.1 For all source s, r ∈ N+[s]
3.2 For all sink t, r ∈ N−[t]

r = s

t1 t`

• • •

f -free

r = t

s1 sk
• • •

f -free
r

t1 t`

s1 sk

• • •

• • •

f -free
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Proving the contradiction

r = s

t1 t`

• • •

f -free

since the com-
ponent has

diameter ≥ 3

r = t
f -free

s1 sk
• • •

s

r

t1 t`

• • •

f -free

s1 sk
• • •

s

Lemma
1. r is either a sink or the only inneighbour of all sinks.

2. There is only one source.
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Proving the contradiction
Fact to contradict: there is ≤ 1 f -free non-edge

The last steps

1. s has an outneighbour distinct from r
2. s has a non-neighbour y1 ∈ B. No successor of s and

predecessor of r can be adjacent to y1.
3. sy1 is not f -free; its preimage is in B since s is a source
4. xy1 has a preimage by f , which cannot be y1z with z ∈ B

since otherwise z ∈ N(s)
5. z is a successor of s and a predecessor of r : contradiction!

A B

s

r

x

y1

y2

f
z

z
f
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Conclusion
1. Strengthening the Murty-Simon Conjecture in two ways:

linear and constant

2. Proving the constant strengthening for D2C graphs with a
dominating edge

Future research
1. Improving the constant bound for this family

→ Difficulty:
most properties of the f -orientation are local

2. Studying other families of D2C graphs
3. Reaching for asymptotic results
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