Neighbour sum-distinguishing edge colorings with local constraints

Antoine Dailly ${ }^{1}$, Éric Duchêne ${ }^{2}$, Aline Parreau ${ }^{2}$, Elżbieta Sidorowicz ${ }^{3}$

ICGT 2022
${ }^{1}$ G-SCOP, Grenoble
${ }^{2}$ LIRIS, Lyon
${ }^{3}$ University of Zielona Góra, Pologne

Distinguishing colorings

Principle

An edge coloring ω of a graph G induces a vertex coloring σ_{ω}. We want σ_{ω} to distinguish the vertices of G.

Distinguishing colorings

Principle

An edge coloring ω of a graph G induces a vertex coloring σ_{ω}. We want σ_{ω} to distinguish the vertices of G.

- Global distinguishing: $\forall u, v \in V(G), \sigma_{\omega}(u) \neq \sigma_{\omega}(v)$
- Local distinguishing: σ_{ω} is proper

Distinguishing colorings

Principle

An edge coloring ω of a graph G induces a vertex coloring σ_{ω}. We want σ_{ω} to distinguish the vertices of G.

- Global distinguishing: $\forall u, v \in V(G), \sigma_{\omega}(u) \neq \sigma_{\omega}(v)$
- Local distinguishing: σ_{ω} is proper

Examples

$\sigma_{\omega}(u)$	Global	Local
$\bigcup_{v \in N(u)} \omega(u v)$	[Harary \& Plantholt, 1985]	[Györi et al., 2008]
$\sum_{v \in N(u)} \omega(u v)$	[Chartrand et al., 1988]	[Karoński et al., 2004]
$\prod_{v \in N(u)} \omega(u v)$	Undefined	[Skowronek-Kaziów, 2008]

Distinguishing colorings

Principle

An edge coloring ω of a graph G induces a vertex coloring σ_{ω}. We want σ_{ω} to distinguish the vertices of G.

- Global distinguishing: $\forall u, v \in V(G), \sigma_{\omega}(u) \neq \sigma_{\omega}(v)$
- Local distinguishing: σ_{ω} is proper

Examples

$\sigma_{\omega}(u)$	Global	Local
$\bigcup_{v \in N(u)} \omega(u v)$	[Harary \& Plantholt, 1985]	[Györi et al., 2008]
$+\omega$ proper	[Burris \& Schelp, 1997]	[Zhang et al., 2002]
$\sum_{v \in N(u)} \omega(u v)$	[Chartrand et al., 1988]	[Karoński et al., 2004]
$+\omega$ proper	[Lo, 1985]	[Flandrin et al., 2013]
$\prod_{v \in N(u)} \omega(u v)$	Undefined	Showronek-Kaziów, 2008]
$+\omega$ proper	Undefined	[Li et al., 2017]

Distinguishing colorings

Principle

An edge coloring ω of a graph G induces a vertex coloring σ_{ω}. We want σ_{ω} to distinguish the vertices of G.

- Global distinguishing: $\forall u, v \in V(G), \sigma_{\omega}(u) \neq \sigma_{\omega}(v)$
- Local distinguishing: σ_{ω} is proper

Examples

$\sigma_{\omega}(u)$	Global	Local
$U_{v \in N(u)} \omega(u v)$ $+\omega$ proper	[Harary \& Plantholt, 1985]	[Gyüri et al., 2008]
$\sum_{v \in N(u)} \omega(u v)$	[Chartrand et al.., 1988]	[Zhang et al., 2002]
$+\omega$ proper	[Karoński et al., 2004]	
$\prod_{v \in N(u)} \omega(u v)$ $+\omega$ proper	Undefined	[Flandrin et al., 2013]

\rightarrow We are focusing on local sum-distinguishing edge colorings

Sum-distinguishing edge coloring

Definition

Let ω be a k-edge coloring of G. We define the vertex-coloring $\sigma_{\omega}: \sigma_{\omega}(u)=\sum_{v \in N(u)} \omega(u v)$.
Goal: make σ_{ω} proper while minimizing k.

Sum-distinguishing edge coloring

Definition

Let ω be a k-edge coloring of G. We define the vertex-coloring $\sigma_{\omega}: \sigma_{\omega}(u)=\sum_{v \in N(u)} \omega(u v)$.
Goal: make σ_{ω} proper while minimizing k.

Remarks

- If G non-connected, work independently on each component
- Always exists if G has no K_{2} component

Sum-distinguishing edge coloring

Definition

Let ω be a k-edge coloring of G. We define the vertex-coloring $\sigma_{\omega}: \sigma_{\omega}(u)=\sum_{v \in N(u)} \omega(u v)$.
Goal: make σ_{ω} proper while minimizing k.

Remarks

- If G non-connected, work independently on each component
- Always exists if G has no K_{2} component

1-2-3 Conjecture (Karoński, Luczak, Thomason, 2004)

If no restriction on ω, then at most 3 colors are enough.

Conjecture (Flandrin, Marczyk, Przybylo, Sacle, Woźniak, 2013)
If ω is proper and $G \neq C_{5}$, then $k \leq \Delta(G)+2$.

State of the art

1-2-3 Conjecture

- Best general bound: 5 [Kalkowski, Karoński, Pfender, 2011]
- Holds for 3-colorable graphs [Karoński et al., 2004], 2 are enough for trees [Chang et al., 2011]
- Holds for graphs large enough and very dense $(\delta(G)>0.99985 n)$ [Zhong, 2019] $(\delta(G) \geq C \log (\Delta(G)))$ [Przybyło, 2020+]
- Bound of 4 for d-regular graphs, and holds if $d \geq 10^{8}$ [Przybyło, 2021]

State of the art

1-2-3 Conjecture

- Best general bound: 5 [Kalkowski, Karoński, Pfender, 2011]
- Holds for 3-colorable graphs [Karoński et al., 2004], 2 are enough for trees [Chang et al., 2011]
- Holds for graphs large enough and very dense $(\delta(G)>0.99985 n)$ [Zhong, 2019] $(\delta(G) \geq C \log (\Delta(G)))$ [Przybyło, 2020+]
- Bound of 4 for d-regular graphs, and holds if $d \geq 10^{8}$ [Przybyło, 2021]

Proper variant

- True for trees, $K_{n}, K_{n, n}$ [Flandrin et al., 2013]
- Bound of $\left\lceil\frac{10 \Delta(G)+2}{3}\right\rceil$ [Wang \& Yan, 2014]
- Bound of 6 for subcubic graphs [Huo et al. and Yu et al., 2017]

d-relaxed sum-distinguishing edge coloring

Aim: general framework encompassing both conjectures

d-relaxed sum-distinguishing edge coloring

Aim: general framework encompassing both conjectures

Definition (D., Duchêne, Parreau, Sidorowicz, 2022)

A sum-distinguishing k-edge coloring is d-relaxed if every vertex is incident with at most d edges of the same color.

d-relaxed sum-distinguishing edge coloring

Aim: general framework encompassing both conjectures

Definition (D., Duchêne, Parreau, Sidorowicz, 2022)

A sum-distinguishing k-edge coloring is d-relaxed if every vertex is incident with at most d edges of the same color. The smallest k such that G admits one is denoted $\chi_{\sum}^{\prime d}(G)$.

d-relaxed sum-distinguishing edge coloring

Aim: general framework encompassing both conjectures

Definition (D., Duchêne, Parreau, Sidorowicz, 2022)

A sum-distinguishing k-edge coloring is d-relaxed if every vertex is incident with at most d edges of the same color. The smallest k such that G admits one is denoted $\chi_{\sum}^{\prime d}(G)$.

- $d=\Delta(G):$ 1-2-3 Conjecture
- $d=1$: proper variant

d-relaxed sum-distinguishing edge coloring

Aim: general framework encompassing both conjectures

Definition (D., Duchêne, Parreau, Sidorowicz, 2022)

A sum-distinguishing k-edge coloring is d-relaxed if every vertex is incident with at most d edges of the same color. The smallest k such that G admits one is denoted $\chi_{\sum^{\prime d}}^{(G) \text {. }}$

- $d=\Delta(G):$ 1-2-3 Conjecture
- $d=1$: proper variant

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected $G \notin\left\{K_{2}, C_{5}\right\}, \chi_{\sum}^{\prime d}(G) \leq\left\lceil\frac{\Delta(G)}{d}\right\rceil+2$.

Our results

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected $G \notin\left\{K_{2}, C_{5}\right\}$, $\chi_{\sum}^{\prime d}(G) \leq\left\lceil\frac{\Delta(G)}{d}\right\rceil+2$.

Our results

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected $G \notin\left\{K_{2}, C_{5}\right\}, \chi_{\sum}^{\prime d}(G) \leq\left\lceil\frac{\Delta(G)}{d}\right\rceil+2$.

- Trees: $\chi_{\sum}^{\prime d}(T)=$

$$
\begin{cases}\frac{\Delta(T)}{d}+1, & \text { if } \Delta(T) \equiv 0 \bmod d \text { and there are } 2 \\ \left\lceil\frac{\Delta(T)}{d}\right\rceil, & \text { adjacent vertices of degree } \Delta(T), \\ & \text { otherwise. }\end{cases}
$$

Our results

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected $G \notin\left\{K_{2}, C_{5}\right\}$, $\chi_{\sum}^{\prime d}(G) \leq\left\lceil\frac{\Delta(G)}{d}\right\rceil+2$.

- Trees: $\chi_{\sum}^{\prime d}(T)=$

$$
\begin{cases}\frac{\Delta(T)}{d}+1, & \text { if } \Delta(T) \equiv 0 \bmod d \text { and there are } 2 \\ \left\lceil\frac{\Delta(T)}{d}\right\rceil, & \text { adjacent vertices of degree } \Delta(T), \\ \text { otherwise. }\end{cases}
$$

- Complete graphs:
- $d \in\left\{\left\lceil\frac{n-1}{2}\right\rceil, \ldots, n-2\right\} \Rightarrow \chi^{\prime d}\left(K_{n}\right) \leq 4$
- $\chi_{\sum}^{\prime 2}\left(K_{n}\right)=\left\lceil\frac{n-1}{2}\right\rceil+1$ if $n \not \equiv 3 \bmod 4$ and $\left\lceil\frac{n-1}{2}\right\rceil+2$ otherwise

Our results

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected $G \notin\left\{K_{2}, C_{5}\right\}, \chi_{\sum}^{\prime d}(G) \leq\left\lceil\frac{\Delta(G)}{d}\right\rceil+2$.

- Trees: $\chi_{\sum}^{\prime d}(T)=$

$$
\begin{cases}\frac{\Delta(T)}{d}+1, & \text { if } \Delta(T) \equiv 0 \bmod d \text { and there are } 2 \\ \left\lceil\frac{\Delta(T)}{d}\right\rceil, & \text { adjacent vertices of degree } \Delta(T), \\ \text { otherwise. }\end{cases}
$$

- Complete graphs:
- $d \in\left\{\left\lceil\frac{n-1}{2}\right\rceil, \ldots, n-2\right\} \Rightarrow \chi^{\prime d}\left(K_{n}\right) \leq 4$
- $\chi_{\sum}^{\prime 2}\left(K_{n}\right)=\left\lceil\frac{n-1}{2}\right\rceil+1$ if $n \not \equiv 3 \bmod 4$ and $\left\lceil\frac{n-1}{2}\right\rceil+2$ otherwise
- Subcubic graphs: $\chi_{\sum}^{\prime 2}(G) \leq 4$

Our results

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected $G \notin\left\{K_{2}, C_{5}\right\}, \chi_{\sum}^{\prime d}(G) \leq\left\lceil\frac{\Delta(G)}{d}\right\rceil+2$.

- Trees: $\chi_{\sum}^{\prime d}(T)=$

$$
\begin{cases}\frac{\Delta(T)}{d}+1, & \text { if } \Delta(T) \equiv 0 \bmod d \text { and there are } 2 \\ \left\lceil\frac{\Delta(T)}{d}\right\rceil, & \text { adjacent vertices of degree } \Delta(T), \\ & \text { otherwise. }\end{cases}
$$

- Complete graphs:
- $d \in\left\{\left\lceil\frac{n-1}{2}\right\rceil, \ldots, n-2\right\} \Rightarrow \chi_{\sum}^{\prime d}\left(K_{n}\right) \leq 4$
- $\chi_{\sum}^{\prime 2}\left(K_{n}\right)=\left\lceil\frac{n-1}{2}\right\rceil+1$ if $n \not \equiv 3 \bmod 4$ and $\left\lceil\frac{n-1}{2}\right\rceil+2$ otherwise
- Subcubic graphs: $\chi_{\sum^{\prime 2}}(G) \leq 4$ and every vertex of degree 2 has incident edges of different colors

Complete graphs, $d=2$

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)
Let $n \geq 4$. Then: $\chi_{\sum}^{\prime 2}\left(K_{n}\right)= \begin{cases}\left\lceil\frac{n-1}{2}\right\rceil+1 & \text { if } n \not \equiv 3 \bmod 4 \\ \left\lceil\frac{n-1}{2}\right\rceil+2 & \text { if } n \equiv 3 \bmod 4\end{cases}$

Complete graphs, $d=2$

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)
Let $n \geq 4$. Then: $\chi_{\sum}^{\prime 2}\left(K_{n}\right)= \begin{cases}\left\lceil\frac{n-1}{2}\right\rceil+1 & \text { if } n \not \equiv 3 \bmod 4 \\ \left\lceil\frac{n-1}{2}\right\rceil+2 & \text { if } n \equiv 3 \bmod 4\end{cases}$

Proof in two steps

1. Constructing such a 2 -relaxed distinguishing coloring
2. Necessary to use this many colors

Complete graphs, $d=2$

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)
Let $n \geq 4$. Then: $\chi_{\sum}^{\prime 2}\left(K_{n}\right)= \begin{cases}\left\lceil\frac{n-1}{2}\right\rceil+1 & \text { if } n \not \equiv 3 \bmod 4 \\ \left\lceil\frac{n-1}{2}\right\rceil+2 & \text { if } n \equiv 3 \bmod 4\end{cases}$

Proof in two steps

1. Constructing such a 2-relaxed distinguishing coloring
1.1 Construction of the 2 -relaxed coloring
1.2 Recoloring to make it distinguishing
2. Necessary to use this many colors

Complete graphs, $d=2$: initial construction

$x_{4} O$
$\mathrm{O}^{\mathrm{X}-4}$
O^{x-5}

$$
x_{-1} \mathrm{O}
$$

x_{-1}^{0}

Complete graphs, $d=2$: initial construction

- 1

Complete graphs, $d=2$: initial construction

- $\left\lceil\frac{n}{2}\right\rceil$ colors
- 2-relaxed coloring of K_{n}

Complete graphs, $d=2$: initial construction

- $\left\lceil\frac{n}{2}\right\rceil$ colors
- 2-relaxed coloring of K_{n}
- x_{i} and x_{-i} are not distinguished

Complete graphs, $d=2$: recoloring

Complete graphs, $d=2$: recoloring

Complete graphs: conclusion

Complete graphs: conclusion

d	$\chi_{\sum_{n}^{\prime d}\left(K_{n}\right)}$
1	n if n odd $n+1$ if n even
$n-1$	3

Complete graphs: conclusion

d	$\chi_{\sum_{n}^{\prime d}\left(K_{n}\right)}$
1	n if n odd $n+1$ if n even
2	$\left\lceil\frac{n-1}{2}\right\rceil+1$ if $n \not \equiv 3 \bmod 4$ $\left\lceil\frac{n-1}{2}\right\rceil+2$ if $n \equiv 3 \bmod 4$
$\in\left\{\left\lceil\frac{n-1}{2}\right\rceil, \ldots, n-2\right\}$	3 if $n \in\{3, \ldots, 7\}$ 3 or 4 if $n \geq 7$
$n-1$	3

Complete graphs: conclusion

d	$\chi_{\sum_{n}^{\prime d}\left(K_{n}\right)}$
1	n if n odd $n+1$ if n even
2	$\left\lceil\frac{n-1}{2}\right\rceil+1$ if $n \not \equiv 3 \bmod 4$
$\left\lceil\frac{n-1}{2}\right\rceil+2$ if $n \equiv 3 \bmod 4$	
$\in\left\{3, \ldots,\left\lceil\frac{n-1}{2}\right\rceil-1\right\}$	Open
$\in\left\{\left\lceil\frac{n-1}{2}\right\rceil, \ldots, n-2\right\}$	3 if $n \in\{3, \ldots, 7\}$ 3 or 4 if $n \geq 7$
$n-1$	3

Subcubic graphs

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)
Every subcubic graph $G \notin\left\{K_{2}, C_{5}\right\}$ admits a 2 -relaxed sumdistinguishing 4 -edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Subcubic graphs

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)
Every subcubic graph $G \notin\left\{K_{2}, C_{5}\right\}$ admits a 2 -relaxed sumdistinguishing 4 -edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Proof by induction on the order of G

1. Identify an interesting vertex u

Subcubic graphs

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin\left\{K_{2}, C_{5}\right\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Proof by induction on the order of G

1. Identify an interesting vertex u
2. Use the induction hypothesis on $G-u$ to construct such a coloring

Subcubic graphs

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin\left\{K_{2}, C_{5}\right\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Proof by induction on the order of G

1. Identify an interesting vertex u
2. Use the induction hypothesis on $G-u$ to construct such a coloring
3. Extend the coloring to G : the constraints allow us to use the combinatorial Nullstellensatz

Subcubic graphs

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin\left\{K_{2}, C_{5}\right\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Proof by induction on the order of G

1. Identify an interesting vertex u
2. Use the induction hypothesis on $G-u$ to construct such a coloring
3. Extend the coloring to G : the constraints allow us to use the combinatorial Nullstellensatz

Four cases depending on the girth, with more subcases...

Subcubic graphs: example of a case

G has a degree 2 vertex in a triangle

Subcubic graphs: example of a case

G has a degree 2 vertex in a triangle

Interesting vertex

Subcubic graphs: example of a case

G has a degree 2 vertex in a triangle

Interesting vertex

Subcubic graphs: example of a case

G has a degree 2 vertex in a triangle

Coloring
$G-u$

Subcubic graphs: example of a case

G has a degree 2 vertex in a triangle

Subcubic graphs: example of a case

G has a degree 2 vertex in a triangle

Extension
 to G

Subcubic graphs: example of a case

G has a degree 2 vertex in a triangle

Whether w_{1} exists or not: at most 2 forbidden values for x_{1} and x_{2} to distinguish u from v and w.
Example: w_{1} does not exist $\Rightarrow x_{1}, x_{2} \neq c_{1}$ and $x_{2} \neq c_{1}+c_{2}$.

Subcubic graphs: example of a case

G has a degree 2 vertex in a triangle

Whether w_{1} exists or not: at most 2 forbidden values for x_{1} and x_{2} to distinguish u from v and w.
Example: w_{1} does not exist $\Rightarrow x_{1}, x_{2} \neq c_{1}$ and $x_{2} \neq c_{1}+c_{2}$.
Two conditions: $\{$

Subcubic graphs: example of a case

G has a degree 2 vertex in a triangle

Whether w_{1} exists or not: at most 2 forbidden values for x_{1} and x_{2} to distinguish u from v and w.
Example: w_{1} does not exist $\Rightarrow x_{1}, x_{2} \neq c_{1}$ and $x_{2} \neq c_{1}+c_{2}$.
Two conditions: $\left\{\begin{array}{lll}x_{1} & \neq & x_{2}\end{array}\right.$

Subcubic graphs: example of a case

G has a degree 2 vertex in a triangle

Extension
 to G

Whether w_{1} exists or not: at most 2 forbidden values for x_{1} and x_{2} to distinguish u from v and w.
Example: w_{1} does not exist $\Rightarrow x_{1}, x_{2} \neq c_{1}$ and $x_{2} \neq c_{1}+c_{2}$.

$$
\text { Two conditions: }\left\{\begin{array}{ccc}
x_{1} & \neq & x_{2} \\
x_{1}+c_{2} & \neq & x_{2}+c_{3}
\end{array}\right.
$$

Subcubic graphs: example of a case

G has a degree 2 vertex in a triangle
Two conditions: $\left\{\begin{array}{ccc}x_{1} & \neq & x_{2} \\ x_{1}+c_{2} & \neq & x_{2}+c_{3}\end{array}\right.$

Subcubic graphs: example of a case

G has a degree 2 vertex in a triangle

$$
\text { Two conditions: }\left\{\begin{array}{ccc}
x_{1} & \neq & x_{2} \\
x_{1}+c_{2} & \neq & x_{2}+c_{3}
\end{array}\right.
$$

Let $P\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}+c_{2}-x_{2}-c_{3}\right)$.

Subcubic graphs: example of a case

$$
G \text { has a degree } 2 \text { vertex in a triangle }
$$

$$
\text { Two conditions: }\left\{\begin{array}{ccc}
x_{1} & \neq & x_{2} \\
x_{1}+c_{2} & \neq & x_{2}+c_{3}
\end{array}\right.
$$

Let $P\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}+c_{2}-x_{2}-c_{3}\right)$. If x_{1} and x_{2} have values such that P is nonzero, then, the conditions hold and we can extend the coloring.

Subcubic graphs: example of a case

$$
G \text { has a degree } 2 \text { vertex in a triangle }
$$

$$
\text { Two conditions: }\left\{\begin{array}{ccc}
x_{1} & \neq & x_{2} \\
x_{1}+c_{2} & \neq & x_{2}+c_{3}
\end{array}\right.
$$

Let $P\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}+c_{2}-x_{2}-c_{3}\right)$. If x_{1} and x_{2} have values such that P is nonzero, then, the conditions hold and we can extend the coloring.

Combinatorial Nullstellensatz (Alon, 1999)

Let $P\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial over a field F and $x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ be a monomial of nonzero coefficient and maximal degree in P. For each $S_{1}, \ldots, S_{n} \subseteq F$ such that $\left|S_{i}\right|>k_{i}$, there are $a_{1} \in$ $S_{1}, \ldots, a_{n} \in S_{n}$ such that $P\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

Subcubic graphs: example of a case

$$
G \text { has a degree } 2 \text { vertex in a triangle }
$$

$$
\text { Two conditions: }\left\{\begin{array}{ccc}
x_{1} & \neq & x_{2} \\
x_{1}+c_{2} & \neq & x_{2}+c_{3}
\end{array}\right.
$$

Let $P\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}+c_{2}-x_{2}-c_{3}\right)$. If x_{1} and x_{2} have values such that P is nonzero, then, the conditions hold and we can extend the coloring.

Combinatorial Nullstellensatz (Alon, 1999)

Let $P\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial over a field F and $x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ be a monomial of nonzero coefficient and maximal degree in P. For each $S_{1}, \ldots, S_{n} \subseteq F$ such that $\left|S_{i}\right|>k_{i}$, there are $a_{1} \in$ $S_{1}, \ldots, a_{n} \in S_{n}$ such that $P\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

The monomial $x_{1} x_{2}$ has coefficient 2 and maximal degree in P, and $\left|S_{1}\right|,\left|S_{2}\right|>1 \Rightarrow$ We can extend the coloring

Beyond subcubic graphs

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)
Every subcubic graph $G \notin\left\{K_{2}, C_{5}\right\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Beyond subcubic graphs

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin\left\{K_{2}, C_{5}\right\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Theorem (D., Sidorowicz, 2022+)
Every graph G with $\Delta(G) \leq 4$ (resp. 5) admits a sumdistinguishing 6 -edge coloring (resp. 7-edge coloring) such that every vertex of degree at least 2 is incident with at least two edges of different colors.

Beyond subcubic graphs

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin\left\{K_{2}, C_{5}\right\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Theorem (D., Sidorowicz, 2022+)
Every graph G with $\Delta(G) \leq 4$ (resp. 5) admits a sumdistinguishing 6 -edge coloring (resp. 7-edge coloring) such that every vertex of degree at least 2 is incident with at least two edges of different colors.

Theorem (D., Sidorowicz, 2022+)
Every graph G admits a sum distinguishing 7-edge coloring such that every vertex of degree at least 6 is incident with at least two edges of different colors.

Beyond subcubic graphs

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin\left\{K_{2}, C_{5}\right\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Theorem (D., Sidorowicz, 2022+)
Every graph G with $\Delta(G) \leq 4$ (resp. 5) admits a sumdistinguishing 6 -edge coloring (resp. 7-edge coloring) such that every vertex of degree at least 2 is incident with at least two edges of different colors.

Theorem (D., Sidorowicz, 2022+)
Every graph G admits a sum distinguishing 7-edge coloring such that every vertex of degree at least 6 is incident with at least two edges of different colors.

Stronger local constraint, but weaker bound!

Beyond subcubic graphs

Theorem (D., Sidorowicz, 2022+)
Every graph G admits a sum distinguishing 7-edge coloring such that every vertex of degree at least 6 is incident with at least two edges of different colors.

Proof idea
Adaptation of an algorithm by Kalkowski (2009+).

Beyond subcubic graphs

Theorem (D., Sidorowicz, 2022+)

Every graph G admits a sum distinguishing 7-edge coloring such that every vertex of degree at least 6 is incident with at least two edges of different colors.

Proof idea
Adaptation of an algorithm by Kalkowski (2009+).

1. Define a vertex ordering with specific properties
2. Every edge receives color 4

Beyond subcubic graphs

Theorem (D., Sidorowicz, 2022+)

Every graph G admits a sum distinguishing 7-edge coloring such that every vertex of degree at least 6 is incident with at least two edges of different colors.

Proof idea
Adaptation of an algorithm by Kalkowski (2009+).

1. Define a vertex ordering with specific properties
2. Every edge receives color 4
3. Consider each vertex in the order
3.1 The only edges that can be modified are between the vertex, its predecessors, and its first successor
3.2 Ensure that the coloring is sum-distinguishing and that every vertex of degree at least 6 is incident with a non-monochromatic set of edges
\rightarrow Several cases are considered

Beyond subcubic graphs

Corollary

Let G be a graph. We have:

- $\Delta(G) \leq 3 \Rightarrow \chi_{\sum^{\prime \Delta(G)-1}}(G) \leq 4$
- $\Delta(G) \leq 4 \Rightarrow \chi_{\sum^{\prime \Delta(G)-1}}(G) \leq 6$
- $\Delta(G) \leq 5 \Rightarrow \chi_{\sum^{\prime \Delta(G)-1}}(G) \leq 7$

Corollary

Every graph G verifies $\chi_{\sum}^{\prime \Delta(G)-1}(G) \leq 7$.

Conclusion

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)
For every connected $G \notin\left\{K_{2}, C_{5}\right\}$, $\chi_{\sum}^{\prime d}(G) \leq\left\lceil\frac{\Delta(G)}{d}\right\rceil+2$.
\rightarrow Generalization of the 1-2-3 Conjecture and its proper variant

Conclusion

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)
For every connected $G \notin\left\{K_{2}, C_{5}\right\}, \chi_{\sum}^{\prime d}(G) \leq\left\lceil\frac{\Delta(G)}{d}\right\rceil+2$.
\rightarrow Generalization of the 1-2-3 Conjecture and its proper variant

1. Trees, complete graphs $\left(d=2\right.$ and $\left.d \in\left\{\left\lceil\frac{n-1}{2}\right\rceil, \ldots, n-2\right\}\right)$
2. Subcubic graphs and beyond
3. General bound of 7 for $d=\Delta(G)-1$

Conclusion

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected $G \notin\left\{K_{2}, C_{5}\right\}, \chi_{\sum}^{\prime d}(G) \leq\left\lceil\frac{\Delta(G)}{d}\right\rceil+2$.
\rightarrow Generalization of the 1-2-3 Conjecture and its proper variant

1. Trees, complete graphs ($d=2$ and $d \in\left\{\left\lceil\frac{n-1}{2}\right\rceil, \ldots, n-2\right\}$)
2. Subcubic graphs and beyond
3. General bound of 7 for $d=\Delta(G)-1$

Open questions

- Complete graphs: $d \in\left\{3, \ldots,\left\lceil\frac{n-1}{2}\right\rceil-1\right\}$, exact value for $d \in\left\{\left\lceil\frac{n-1}{2}\right\rceil, \ldots, n-2\right\}$
- Other classes, stronger general bounds

Conclusion

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected $G \notin\left\{K_{2}, C_{5}\right\}, \chi_{\sum}^{\prime d}(G) \leq\left\lceil\frac{\Delta(G)}{d}\right\rceil+2$.
\rightarrow Generalization of the 1-2-3 Conjecture and its proper variant

1. Trees, complete graphs ($d=2$ and $d \in\left\{\left\lceil\frac{n-1}{2}\right\rceil, \ldots, n-2\right\}$)
2. Subcubic graphs and beyond
3. General bound of 7 for $d=\Delta(G)-1$

Open questions

- Complete graphs: $d \in\left\{3, \ldots,\left\lceil\frac{n-1}{2}\right\rceil-1\right\}$, exact value for $d \in\left\{\left\lceil\frac{n-1}{2}\right\rceil, \ldots, n-2\right\}$
- Other classes, stronger general bounds

