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Distinguishing colorings

An edge coloring ω of a graph G induces a vertex coloring σω.
We want σω to distinguish the vertices of G .

▶ Global distinguishing: ∀u, v ∈ V (G), σω(u) ̸= σω(v)
▶ Local distinguishing: σω is proper

Principle

Examples
σω(u) Global Local⋃

v∈N(u) ω(uv) [Harary & Plantholt, 1985] [Györi et al., 2008]
+ ω proper [Burris & Schelp, 1997] [Zhang et al., 2002]∑
v∈N(u) ω(uv) [Chartrand et al., 1988] [Karoński et al., 2004]
+ ω proper [Lo, 1985] [Flandrin et al., 2013]∏
v∈N(u) ω(uv) Undefined [Skowronek-Kaziów, 2008]
+ ω proper Undefined [Li et al., 2017]

→ We are focusing on local sum-distinguishing edge colorings
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Sum-distinguishing edge coloring

Let ω be a k-edge coloring of G . We define the vertex-coloring
σω : σω(u) =

∑
v∈N(u) ω(uv).

Goal: make σω proper while minimizing k.

Definition

Remarks
▶ If G non-connected, work independently on each component
▶ Always exists if G has no K2 component

If no restriction on ω, then at most 3 colors are enough.

1-2-3 Conjecture (Karoński, Luczak, Thomason, 2004)

If ω is proper and G ̸= C5, then k ≤ ∆(G) + 2.

Conjecture (Flandrin, Marczyk, Przybylo, Sacle, Woźniak, 2013)
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State of the art
1-2-3 Conjecture
▶ Best general bound: 5 [Kalkowski, Karoński, Pfender, 2011]
▶ Holds for 3-colorable graphs [Karoński et al., 2004], 2 are

enough for trees [Chang et al., 2011]
▶ Holds for graphs large enough and very dense

(δ(G) > 0.99985n) [Zhong, 2019] (δ(G) ≥ C log(∆(G)))
[Przybyło, 2020+]

▶ Bound of 4 for d-regular graphs, and holds if d ≥ 108

[Przybyło, 2021]

Proper variant
▶ True for trees, Kn, Kn,n [Flandrin et al., 2013]
▶ Bound of ⌈10∆(G)+2

3 ⌉ [Wang & Yan, 2014]
▶ Bound of 6 for subcubic graphs [Huo et al. and Yu et al.,

2017]
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d-relaxed sum-distinguishing edge coloring
Aim: general framework encompassing both conjectures

A sum-distinguishing k-edge coloring is d-relaxed if every vertex
is incident with at most d edges of the same color.

The smallest k such that G admits one is denoted χ′d∑(G).

Definition (D., Duchêne, Parreau, Sidorowicz, 2022)

▶ d = ∆(G): 1-2-3 Conjecture
▶ d = 1: proper variant

For every connected G ̸∈ {K2, C5}, χ′d∑(G) ≤
⌈

∆(G)
d

⌉
+ 2.

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)
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Our results

For every connected G ̸∈ {K2, C5}, χ′d∑(G) ≤
⌈

∆(G)
d

⌉
+ 2.

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

▶ Trees: χ′d∑(T ) =
∆(T )

d + 1,
if ∆(T ) ≡ 0 mod d and there are 2
adjacent vertices of degree ∆(T ),⌈

∆(T )
d

⌉
, otherwise.

▶ Complete graphs:
▶ d ∈ {⌈ n−1

2 ⌉, . . . , n − 2} ⇒ χ′d∑(Kn) ≤ 4
▶ χ′2∑(Kn) = ⌈ n−1

2 ⌉ + 1 if n ̸≡ 3 mod 4 and ⌈ n−1
2 ⌉ + 2 otherwise

▶ Subcubic graphs: χ′2∑(G) ≤ 4

and every vertex of degree 2
has incident edges of different colors
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Complete graphs, d = 2

Let n ≥ 4. Then: χ′2∑(Kn) =
{

⌈n−1
2 ⌉ + 1 if n ̸≡ 3 mod 4

⌈n−1
2 ⌉ + 2 if n ≡ 3 mod 4

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Proof in two steps
1. Constructing such a 2-relaxed distinguishing coloring

1.1 Construction of the 2-relaxed coloring
1.2 Recoloring to make it distinguishing

2. Necessary to use this many colors
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Complete graphs, d = 2: initial construction
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▶ ⌈n
2⌉ colors

▶ 2-relaxed coloring of Kn

▶ xi and x−i are not distinguished
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Complete graphs, d = 2: recoloring
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Complete graphs: conclusion

d χ′d∑(Kn)

1 n if n odd
n + 1 if n even

2 ⌈n−1
2 ⌉ + 1 if n ̸≡ 3 mod 4

⌈n−1
2 ⌉ + 2 if n ≡ 3 mod 4

∈ {3, . . . , ⌈n−1
2 ⌉ − 1} Open

∈ {⌈n−1
2 ⌉, . . . , n − 2} 3 if n ∈ {3, . . . , 7}

3 or 4 if n ≥ 7
n − 1 3
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Subcubic graphs

Every subcubic graph G ̸∈ {K2, C5} admits a 2-relaxed sum-
distinguishing 4-edge coloring such that every degree 2 vertex is
incident with two edges of different colors.

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Proof by induction on the order of G
1. Identify an interesting vertex u

2. Use the induction hypothesis on G − u to construct such a
coloring

3. Extend the coloring to G : the constraints allow us to use the
combinatorial Nullstellensatz

Four cases depending on the girth, with more subcases...
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Subcubic graphs: example of a case

G has a degree 2 vertex in a triangle

Interesting
vertex

Coloring
G − u

Extension
to G

u

v

w

v1

w1

c3

c2

c1

x1

x2

Whether w1 exists or not: at most 2 forbidden values for x1 and x2
to distinguish u from v and w .
Example: w1 does not exist ⇒ x1, x2 ̸= c1 and x2 ̸= c1 + c2.

Two conditions:
{

x1 ̸= x2
x1 + c2 ̸= x2 + c3
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Subcubic graphs: example of a case
G has a degree 2 vertex in a triangle

Two conditions:
{

x1 ̸= x2
x1 + c2 ̸= x2 + c3

Let P(x1, x2) = (x1 − x2)(x1 + c2 − x2 − c3).

If x1 and x2 have
values such that P is nonzero, then, the conditions hold and we
can extend the coloring.

Let P(x1, . . . , xn) be a polynomial over a field F and xk1
1 . . . xkn

n
be a monomial of nonzero coefficient and maximal degree in P.
For each S1, . . . , Sn ⊆ F such that |Si | > ki , there are a1 ∈
S1, . . . , an ∈ Sn such that P(a1, . . . , an) ̸= 0.

Combinatorial Nullstellensatz (Alon, 1999)

The monomial x1x2 has coefficient 2 and maximal degree in P, and
|S1|, |S2| > 1 ⇒ We can extend the coloring

13/17
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Beyond subcubic graphs

Every subcubic graph G ̸∈ {K2, C5} admits a 2-relaxed sum-
distinguishing 4-edge coloring such that every degree 2 vertex is
incident with two edges of different colors.

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every graph G with ∆(G) ≤ 4 (resp. 5) admits a sum-
distinguishing 6-edge coloring (resp. 7-edge coloring) such that
every vertex of degree at least 2 is incident with at least two
edges of different colors.

Theorem (D., Sidorowicz, 2022+)

Every graph G admits a sum distinguishing 7-edge coloring such
that every vertex of degree at least 6 is incident with at least two
edges of different colors.

Theorem (D., Sidorowicz, 2022+)

Stronger local constraint, but weaker bound!
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Beyond subcubic graphs

Every graph G admits a sum distinguishing 7-edge coloring such
that every vertex of degree at least 6 is incident with at least two
edges of different colors.

Theorem (D., Sidorowicz, 2022+)

Proof idea
Adaptation of an algorithm by Kalkowski (2009+).

1. Define a vertex ordering with specific properties
2. Every edge receives color 4

3. Consider each vertex in the order
3.1 The only edges that can be modified are between the vertex,

its predecessors, and its first successor
3.2 Ensure that the coloring is sum-distinguishing and that every

vertex of degree at least 6 is incident with a
non-monochromatic set of edges

→ Several cases are considered
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Beyond subcubic graphs

Let G be a graph. We have:
▶ ∆(G) ≤ 3 ⇒ χ

′∆(G)−1∑ (G) ≤ 4

▶ ∆(G) ≤ 4 ⇒ χ
′∆(G)−1∑ (G) ≤ 6

▶ ∆(G) ≤ 5 ⇒ χ
′∆(G)−1∑ (G) ≤ 7

Corollary

Every graph G verifies χ
′∆(G)−1∑ (G) ≤ 7.

Corollary

16/17



Conclusion

For every connected G ̸∈ {K2, C5}, χ′d∑(G) ≤
⌈

∆(G)
d

⌉
+ 2.

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

→ Generalization of the 1-2-3 Conjecture and its proper variant

1. Trees, complete graphs (d = 2 and d ∈ {⌈n−1
2 ⌉, . . . , n − 2})

2. Subcubic graphs and beyond
3. General bound of 7 for d = ∆(G) − 1

Open questions
▶ Complete graphs: d ∈ {3, . . . , ⌈n−1

2 ⌉ − 1}, exact value for
d ∈ {⌈n−1

2 ⌉, . . . , n − 2}
▶ Other classes, stronger general bounds
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