Neighbour sum-distinguishing edge colorings with local constraints

Antoine Dailly¹, Éric Duchêne², Aline Parreau², Elżbieta Sidorowicz³

ICGT 2022

G-SCOP, Grenoble
 ² LIRIS, Lyon
 ³ University of Zielona Góra, Pologne

Principle

An edge coloring ω of a graph G induces a vertex coloring σ_{ω} . We want σ_{ω} to *distinguish* the vertices of G.

Principle

An edge coloring ω of a graph G induces a vertex coloring σ_{ω} . We want σ_{ω} to *distinguish* the vertices of G.

• Global distinguishing: $\forall u, v \in V(G), \sigma_{\omega}(u) \neq \sigma_{\omega}(v)$

• Local distinguishing: σ_{ω} is proper

Principle

An edge coloring ω of a graph *G* induces a vertex coloring σ_{ω} . We want σ_{ω} to *distinguish* the vertices of *G*.

- Global distinguishing: $\forall u, v \in V(G), \sigma_{\omega}(u) \neq \sigma_{\omega}(v)$
- Local distinguishing: σ_{ω} is proper

Examples

$\sigma_{\omega}(u)$	Global	Local
$\bigcup_{v\in N(u)}\omega(uv)$	[Harary & Plantholt, 1985]	[Györi <i>et al.</i> , 2008]
$\sum_{v\in N(u)}\omega(uv)$	[Chartrand <i>et al.</i> , 1988]	[Karoński <i>et al.</i> , 2004]
$\prod_{v\in N(u)}\omega(uv)$	Undefined	[Skowronek-Kaziów, 2008]

Principle

An edge coloring ω of a graph *G* induces a vertex coloring σ_{ω} . We want σ_{ω} to *distinguish* the vertices of *G*.

- Global distinguishing: $\forall u, v \in V(G), \sigma_{\omega}(u) \neq \sigma_{\omega}(v)$
- Local distinguishing: σ_{ω} is proper

Examples

$\sigma_{\omega}(u)$	Global	Local
$\bigcup_{v\in N(u)}\omega(uv)$	[Harary & Plantholt, 1985]	[Györi <i>et al.</i> , 2008]
$+\omega$ proper	[Burris & Schelp, 1997]	[Zhang <i>et al.</i> , 2002]
$\sum_{v \in N(u)} \omega(uv)$	[Chartrand et al., 1988]	[Karoński <i>et al</i> ., 2004]
$+\omega$ proper	[Lo, 1985]	[Flandrin <i>et al.</i> , 2013]
$\prod_{v\in N(u)}\omega(uv)$	Undefined	[Skowronek-Kaziów, 2008]
$+ \omega$ proper	Undefined	[Li <i>et al.</i> , 2017]

Principle

An edge coloring ω of a graph *G* induces a vertex coloring σ_{ω} . We want σ_{ω} to *distinguish* the vertices of *G*.

- Global distinguishing: $\forall u, v \in V(G), \sigma_{\omega}(u) \neq \sigma_{\omega}(v)$
- Local distinguishing: σ_{ω} is proper

Examples

$\sigma_{\omega}(u)$	Global	Local
$\bigcup_{v\in N(u)}\omega(uv)$	[Harary & Plantholt, 1985]	[Györi <i>et al.</i> , 2008]
$+ \omega$ proper	[Burris & Schelp, 1997]	[Zhang <i>et al.</i> , 2002]
$\sum_{v\in N(u)}\omega(uv)$	[Chartrand et al., 1988]	[Karoński <i>et al.</i> , 2004]
$+\omega$ proper	[Lo, 1985]	[Flandrin <i>et al.</i> , 2013]
$\prod_{v\in N(u)}\omega(uv)$	Undefined	[Skowronek-Kaziów, 2008]
$+ \omega$ proper	Undefined	[Li <i>et al.</i> , 2017]

 \rightarrow We are focusing on local sum-distinguishing edge colorings

Sum-distinguishing edge coloring

Definition

Let ω be a k-edge coloring of G. We define the vertex-coloring σ_{ω} : $\sigma_{\omega}(u) = \sum_{v \in N(u)} \omega(uv)$. Goal: make σ_{ω} proper while minimizing k.

Sum-distinguishing edge coloring

Definition

Let ω be a *k*-edge coloring of *G*. We define the vertex-coloring σ_{ω} : $\sigma_{\omega}(u) = \sum_{v \in N(u)} \omega(uv)$. Goal: make σ_{ω} proper while minimizing *k*.

Remarks

- ▶ If *G* non-connected, work independently on each component
- ► Always exists if *G* has no *K*₂ component

Sum-distinguishing edge coloring

Definition

Let ω be a k-edge coloring of G. We define the vertex-coloring σ_{ω} : $\sigma_{\omega}(u) = \sum_{v \in N(u)} \omega(uv)$. Goal: make σ_{ω} proper while minimizing k.

Remarks

- ▶ If G non-connected, work independently on each component
- ► Always exists if *G* has no *K*₂ component

1-2-3 Conjecture (Karoński, Luczak, Thomason, 2004)

If no restriction on ω , then at most 3 colors are enough.

Conjecture (Flandrin, Marczyk, Przybylo, Sacle, Woźniak, 2013)

If ω is proper and $G \neq C_5$, then $k \leq \Delta(G) + 2$.

State of the art

1-2-3 Conjecture

- Best general bound: 5 [Kalkowski, Karoński, Pfender, 2011]
- ► Holds for 3-colorable graphs [Karoński *et al.*, 2004], 2 are enough for trees [Chang *et al.*, 2011]
- ► Holds for graphs large enough and very dense (δ(G) > 0.99985n) [Zhong, 2019] (δ(G) ≥ C log(Δ(G))) [Przybyło, 2020+]
- ▶ Bound of 4 for *d*-regular graphs, and holds if *d* ≥ 10⁸ [Przybyło, 2021]

State of the art

1-2-3 Conjecture

- Best general bound: 5 [Kalkowski, Karoński, Pfender, 2011]
- ► Holds for 3-colorable graphs [Karoński *et al.*, 2004], 2 are enough for trees [Chang *et al.*, 2011]
- ► Holds for graphs large enough and very dense (δ(G) > 0.99985n) [Zhong, 2019] (δ(G) ≥ C log(Δ(G))) [Przybyło, 2020+]
- ▶ Bound of 4 for *d*-regular graphs, and holds if *d* ≥ 10⁸ [Przybyło, 2021]

Proper variant

- ▶ True for trees, K_n , $K_{n,n}$ [Flandrin *et al.*, 2013]
- ► Bound of $\lceil \frac{10\Delta(G)+2}{3} \rceil$ [Wang & Yan, 2014]
- Bound of 6 for subcubic graphs [Huo et al. and Yu et al., 2017]

Aim: general framework encompassing both conjectures

Aim: general framework encompassing both conjectures

Definition (D., Duchêne, Parreau, Sidorowicz, 2022)

A sum-distinguishing k-edge coloring is d-relaxed if every vertex is incident with **at most** d edges of the same color.

Aim: general framework encompassing both conjectures

Definition (D., Duchêne, Parreau, Sidorowicz, 2022)

A sum-distinguishing k-edge coloring is *d*-relaxed if every vertex is incident with **at most** d edges of the same color. The smallest k such that G admits one is denoted $\chi_{\Sigma}^{\prime d}(G)$.

Aim: general framework encompassing both conjectures

Definition (D., Duchêne, Parreau, Sidorowicz, 2022)

A sum-distinguishing k-edge coloring is *d*-relaxed if every vertex is incident with **at most** d edges of the same color. The smallest k such that G admits one is denoted $\chi_{\Sigma}^{\prime d}(G)$.

►
$$d = \Delta(G)$$
: 1-2-3 Conjecture

• d = 1: proper variant

Aim: general framework encompassing both conjectures

Definition (D., Duchêne, Parreau, Sidorowicz, 2022)

A sum-distinguishing k-edge coloring is *d*-relaxed if every vertex is incident with **at most** d edges of the same color. The smallest k such that G admits one is denoted $\chi_{\Sigma}^{\prime d}(G)$.

•
$$d = \Delta(G)$$
: 1-2-3 Conjecture

• d = 1: proper variant

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected $G \notin \{K_2, C_5\}$, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected
$$G \notin \{K_2, C_5\}$$
, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected
$$G \notin \{K_2, C_5\}$$
, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

► Trees:
$$\chi_{\sum}^{\prime d}(T) = \begin{cases} \frac{\Delta(T)}{d} + 1, & \text{if } \Delta(T) \equiv 0 \mod d \text{ and there are } 2 \\ \left\lceil \frac{\Delta(T)}{d} \right\rceil, & \text{otherwise.} \end{cases}$$

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected
$$G \notin \{K_2, C_5\}$$
, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

► Trees:
$$\chi_{\sum}^{\prime d}(T) = \begin{cases} \frac{\Delta(T)}{d} + 1, & \text{if } \Delta(T) \equiv 0 \mod d \text{ and there are } 2 \\ \left\lceil \frac{\Delta(T)}{d} \right\rceil + 1, & \text{adjacent vertices of degree } \Delta(T), \\ \left\lceil \frac{\Delta(T)}{d} \right\rceil, & \text{otherwise.} \end{cases}$$

Complete graphs:

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected
$$G \notin \{K_2, C_5\}$$
, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

► Trees:
$$\chi_{\sum}^{\prime d}(T) = \begin{cases} \frac{\Delta(T)}{d} + 1, & \text{if } \Delta(T) \equiv 0 \mod d \text{ and there are } 2 \\ \frac{\Delta(T)}{d} + 1, & \text{adjacent vertices of degree } \Delta(T), \\ \frac{\Delta(T)}{d}, & \text{otherwise.} \end{cases}$$

Complete graphs:

d ∈ { [n-1/2],...,n-2} ⇒ χ^{'d}_∑(K_n) ≤ 4
χ^{'2}_∑(K_n) = [n-1/2] + 1 if n ≠ 3 mod 4 and [n-1/2] + 2 otherwise
Subcubic graphs: χ^{'2}_∑(G) ≤ 4

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected
$$G \notin \{K_2, C_5\}$$
, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

► Trees:
$$\chi_{\sum}^{\prime d}(T) = \begin{cases} \frac{\Delta(T)}{d} + 1, & \text{if } \Delta(T) \equiv 0 \mod d \text{ and there are } 2 \\ \left\lceil \frac{\Delta(T)}{d} \right\rceil, & \text{otherwise.} \end{cases}$$

Complete graphs:

d ∈ { [ⁿ⁻¹/₂],...,n-2} ⇒ χ^{'d}_∑(K_n) ≤ 4
χ^{'2}_∑(K_n) = [ⁿ⁻¹/₂] + 1 if n ≠ 3 mod 4 and [ⁿ⁻¹/₂] + 2 otherwise

► Subcubic graphs: \(\chi_2'(G) \le 4\) and every vertex of degree 2 has incident edges of different colors

Complete graphs, d = 2

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Let
$$n \ge 4$$
. Then: $\chi_{\sum}^{\prime 2}(\mathcal{K}_n) = \begin{cases} \lceil \frac{n-1}{2} \rceil + 1 & \text{if } n \not\equiv 3 \mod 4 \\ \lceil \frac{n-1}{2} \rceil + 2 & \text{if } n \equiv 3 \mod 4 \end{cases}$

Complete graphs, d = 2

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Let
$$n \ge 4$$
. Then: $\chi_{\sum}^{\prime 2}(K_n) = \begin{cases} \lceil \frac{n-1}{2} \rceil + 1 & \text{if } n \not\equiv 3 \mod 4 \\ \lceil \frac{n-1}{2} \rceil + 2 & \text{if } n \equiv 3 \mod 4 \end{cases}$

Proof in two steps

1. Constructing such a 2-relaxed distinguishing coloring

2. Necessary to use this many colors

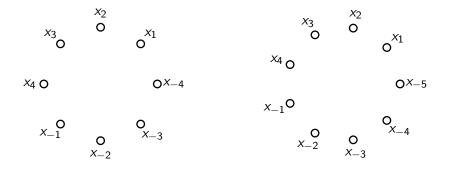
Complete graphs, d = 2

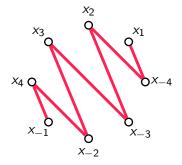
Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

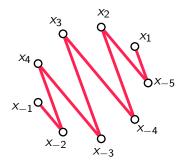
Let
$$n \ge 4$$
. Then: $\chi_{\sum}^{\prime 2}(K_n) = \begin{cases} \lceil \frac{n-1}{2} \rceil + 1 & \text{if } n \not\equiv 3 \mod 4 \\ \lceil \frac{n-1}{2} \rceil + 2 & \text{if } n \equiv 3 \mod 4 \end{cases}$

Proof in two steps

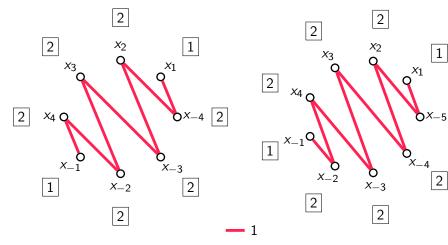
- 1. Constructing such a 2-relaxed distinguishing coloring
 - $1.1\,$ Construction of the 2-relaxed coloring
 - $1.2\,$ Recoloring to make it distinguishing
- 2. Necessary to use this many colors



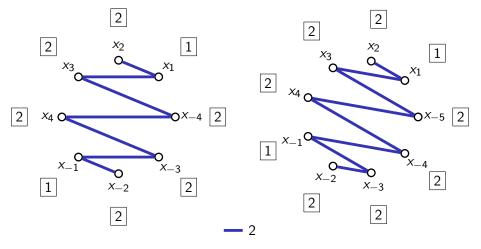


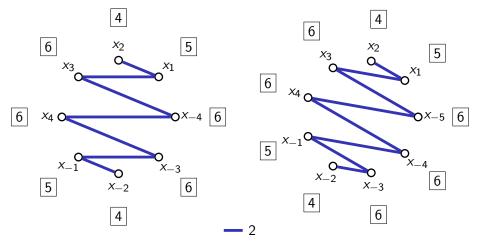


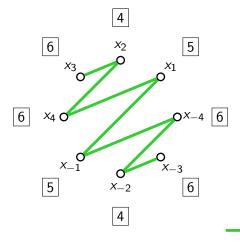
— 1

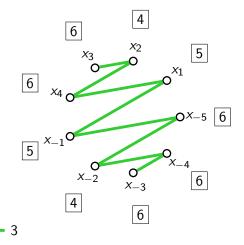


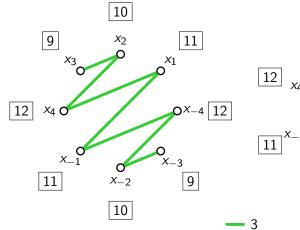
2

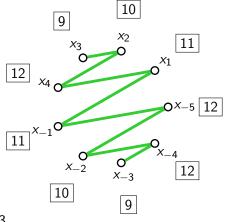


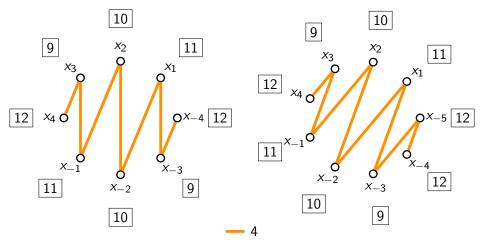


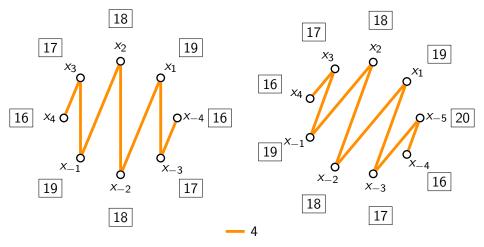


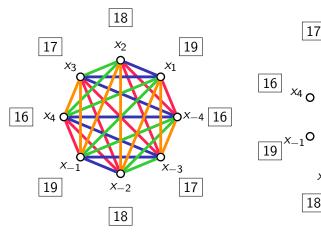


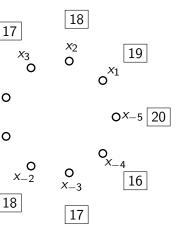


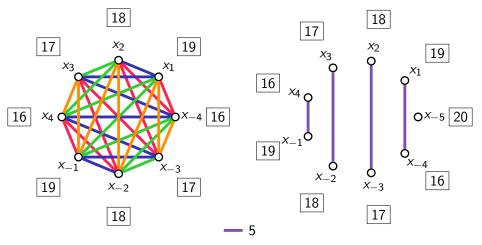


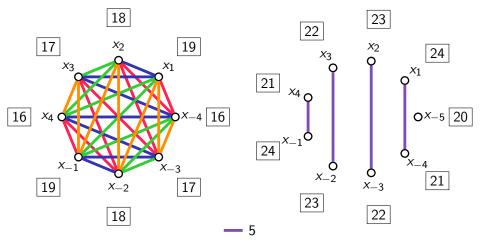




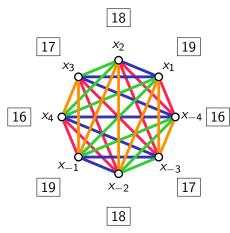


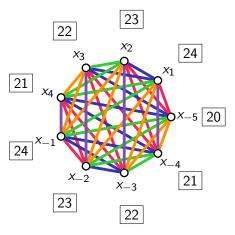




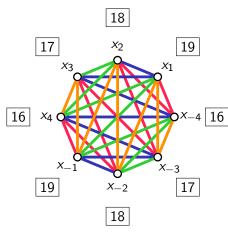


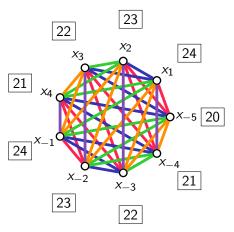
Complete graphs, d = 2: initial construction





Complete graphs, d = 2: initial construction

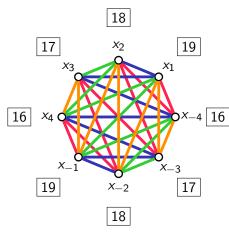


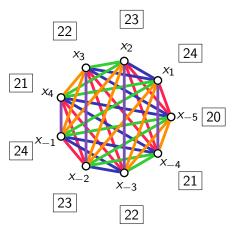


 \blacktriangleright $\left\lceil \frac{n}{2} \right\rceil$ colors

• 2-relaxed coloring of K_n

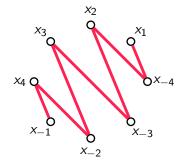
Complete graphs, d = 2: initial construction

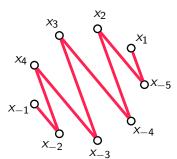




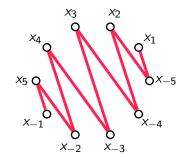
- 2-relaxed coloring of K_n
- x_i and x_{-i} are not distinguished

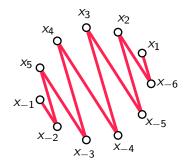
Complete graphs, d = 2: recoloring



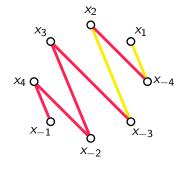


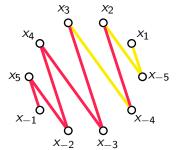
1

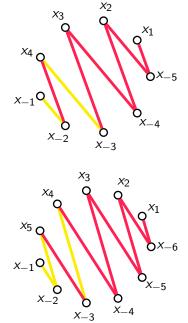




Complete graphs, d = 2: recoloring

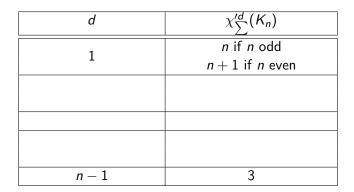




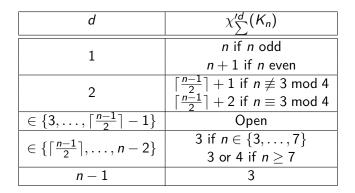


-1-c

d	$\chi_{\sum}^{\prime d}(K_n)$



d	$\chi_{\Sigma}^{\prime d}(K_n)$
1	<i>n</i> if <i>n</i> odd
	n+1 if <i>n</i> even
2	$\left\lceil \frac{n-1}{2} \right\rceil + 1 \text{ if } n \not\equiv 3 \mod 4$ $\left\lceil \frac{n-1}{2} \right\rceil + 2 \text{ if } n \equiv 3 \mod 4$
$\in \{\lceil \frac{n-1}{2} \rceil, \dots, n-2\}$	3 if $n \in \{3,, 7\}$
	3 or 4 if $n \ge 7$
n-1	3



Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin \{K_2, C_5\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin \{K_2, C_5\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Proof by induction on the order of G

1. Identify an interesting vertex u

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin \{K_2, C_5\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Proof by induction on the order of G

- 1. Identify an interesting vertex u
- 2. Use the induction hypothesis on G u to construct such a coloring

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin \{K_2, C_5\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Proof by induction on the order of G

- 1. Identify an interesting vertex u
- 2. Use the induction hypothesis on G u to construct such a coloring
- 3. Extend the coloring to G: the constraints allow us to use the combinatorial Nullstellensatz

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin \{K_2, C_5\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

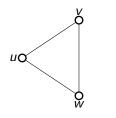
Proof by induction on the order of G

- 1. Identify an interesting vertex u
- 2. Use the induction hypothesis on G u to construct such a coloring
- 3. Extend the coloring to G: the constraints allow us to use the combinatorial Nullstellensatz

Four cases depending on the girth, with more subcases...

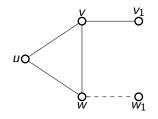
G has a degree 2 vertex in a triangle

G has a degree 2 vertex in a triangle

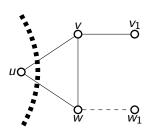


Interesting vertex

G has a degree 2 vertex in a triangle



Interesting vertex



G has a degree 2 vertex in a triangle

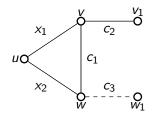
Coloring G - u



G has a degree 2 vertex in a triangle

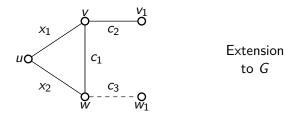
Coloring G - u

G has a degree 2 vertex in a triangle



Extension to G

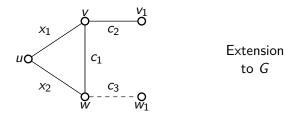
G has a degree 2 vertex in a triangle



Whether w_1 exists or not: at most 2 forbidden values for x_1 and x_2 to distinguish u from v and w.

to G

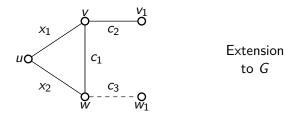
G has a degree 2 vertex in a triangle



Whether w_1 exists or not: at most 2 forbidden values for x_1 and x_2 to distinguish u from v and w.

to G

G has a degree 2 vertex in a triangle

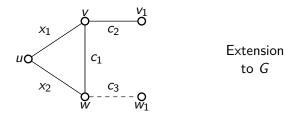


Whether w_1 exists or not: at most 2 forbidden values for x_1 and x_2 to distinguish u from v and w.

to G

Two conditions:
$$\begin{cases} x_1 \neq x_2 \\ \end{array}$$

G has a degree 2 vertex in a triangle



Whether w_1 exists or not: at most 2 forbidden values for x_1 and x_2 to distinguish u from v and w.

to G

Two conditions:
$$\begin{cases} x_1 \neq x_2 \\ x_1 + c_2 \neq x_2 + c_3 \end{cases}$$

G has a degree 2 vertex in a triangle Two conditions: $\begin{cases} x_1 \neq x_2 \\ x_1 + c_2 \neq x_2 + c_3 \end{cases}$

G has a degree 2 vertex in a triangle

Two conditions:
$$\begin{cases} x_1 \neq x_2 \\ x_1 + c_2 \neq x_2 + c_3 \end{cases}$$

Let $P(x_1, x_2) = (x_1 - x_2)(x_1 + c_2 - x_2 - c_3).$

G has a degree 2 vertex in a triangle

Two conditions:
$$\begin{cases} x_1 \neq x_2 \\ x_1 + c_2 \neq x_2 + c_3 \end{cases}$$

Let $P(x_1, x_2) = (x_1 - x_2)(x_1 + c_2 - x_2 - c_3)$. If x_1 and x_2 have values such that P is nonzero, then, the conditions hold and we can extend the coloring.

G has a degree 2 vertex in a triangle

Two conditions:
$$\begin{cases} x_1 \neq x_2 \\ x_1 + c_2 \neq x_2 + c_3 \end{cases}$$

Let $P(x_1, x_2) = (x_1 - x_2)(x_1 + c_2 - x_2 - c_3)$. If x_1 and x_2 have values such that P is nonzero, then, the conditions hold and we can extend the coloring.

Combinatorial Nullstellensatz (Alon, 1999)

Let $P(x_1, \ldots, x_n)$ be a polynomial over a field F and $x_1^{k_1} \ldots x_n^{k_n}$ be a monomial of nonzero coefficient and maximal degree in P. For each $S_1, \ldots, S_n \subseteq F$ such that $|S_i| > k_i$, there are $a_1 \in S_1, \ldots, a_n \in S_n$ such that $P(a_1, \ldots, a_n) \neq 0$.

G has a degree 2 vertex in a triangle

Two conditions:
$$\begin{cases} x_1 \neq x_2 \\ x_1 + c_2 \neq x_2 + c_3 \end{cases}$$

Let $P(x_1, x_2) = (x_1 - x_2)(x_1 + c_2 - x_2 - c_3)$. If x_1 and x_2 have values such that P is nonzero, then, the conditions hold and we can extend the coloring.

Combinatorial Nullstellensatz (Alon, 1999)

Let $P(x_1, \ldots, x_n)$ be a polynomial over a field F and $x_1^{k_1} \ldots x_n^{k_n}$ be a monomial of nonzero coefficient and maximal degree in P. For each $S_1, \ldots, S_n \subseteq F$ such that $|S_i| > k_i$, there are $a_1 \in S_1, \ldots, a_n \in S_n$ such that $P(a_1, \ldots, a_n) \neq 0$.

The monomial x_1x_2 has coefficient 2 and maximal degree in P, and $|S_1|, |S_2| > 1 \Rightarrow$ We can extend the coloring

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin \{K_2, C_5\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin \{K_2, C_5\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Theorem (D., Sidorowicz, 2022+)

Every graph G with $\Delta(G) \leq 4$ (resp. 5) admits a sumdistinguishing 6-edge coloring (resp. 7-edge coloring) such that every vertex of degree at least 2 is incident with at least two edges of different colors.

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin \{K_2, C_5\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Theorem (D., Sidorowicz, 2022+)

Every graph G with $\Delta(G) \leq 4$ (resp. 5) admits a sumdistinguishing 6-edge coloring (resp. 7-edge coloring) such that every vertex of degree at least 2 is incident with at least two edges of different colors.

Theorem (D., Sidorowicz, 2022+)

Every graph G admits a sum distinguishing 7-edge coloring such that every vertex of degree at least 6 is incident with at least two edges of different colors.

Theorem (D., Duchêne, Parreau, Sidorowicz, 2022)

Every subcubic graph $G \notin \{K_2, C_5\}$ admits a 2-relaxed sumdistinguishing 4-edge coloring such that every degree 2 vertex is incident with two edges of different colors.

Theorem (D., Sidorowicz, 2022+)

Every graph G with $\Delta(G) \leq 4$ (resp. 5) admits a sumdistinguishing 6-edge coloring (resp. 7-edge coloring) such that every vertex of degree at least 2 is incident with at least two edges of different colors.

Theorem (D., Sidorowicz, 2022+)

Every graph G admits a sum distinguishing 7-edge coloring such that every vertex of degree at least 6 is incident with at least two edges of different colors.

Stronger local constraint, but weaker bound!

Theorem (D., Sidorowicz, 2022+)

Every graph G admits a sum distinguishing 7-edge coloring such that every vertex of degree at least 6 is incident with at least two edges of different colors.

Proof idea

Adaptation of an algorithm by Kalkowski (2009+).

Theorem (D., Sidorowicz, 2022+)

Every graph G admits a sum distinguishing 7-edge coloring such that every vertex of degree at least 6 is incident with at least two edges of different colors.

Proof idea

Adaptation of an algorithm by Kalkowski (2009+).

- 1. Define a vertex ordering with specific properties
- 2. Every edge receives color 4

Theorem (D., Sidorowicz, 2022+)

Every graph G admits a sum distinguishing 7-edge coloring such that every vertex of degree at least 6 is incident with at least two edges of different colors.

Proof idea

Adaptation of an algorithm by Kalkowski (2009+).

- 1. Define a vertex ordering with specific properties
- 2. Every edge receives color 4
- 3. Consider each vertex in the order
 - 3.1 The only edges that can be modified are between the vertex, its predecessors, and its first successor
 - 3.2 Ensure that the coloring is sum-distinguishing and that every vertex of degree at least 6 is incident with a non-monochromatic set of edges
 - \rightarrow Several cases are considered

Corollary

 Let G be a graph. We have:

$$\blacktriangleright \Delta(G) \leq 3 \Rightarrow \chi_{\Sigma}^{\prime\Delta(G)-1}(G) \leq 4$$
 $\blacktriangleright \Delta(G) \leq 4 \Rightarrow \chi_{\Sigma}^{\prime\Delta(G)-1}(G) \leq 6$
 $\blacktriangleright \Delta(G) \leq 5 \Rightarrow \chi_{\Sigma}^{\prime\Delta(G)-1}(G) \leq 7$

Corollary
Every graph *G* verifies
$$\chi'^{\Delta(G)-1}_{\Sigma}(G) \leq 7$$
.

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected
$$G \notin \{K_2, C_5\}$$
, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

 \rightarrow Generalization of the 1-2-3 Conjecture and its proper variant

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected
$$G
ot\in \{K_2, C_5\}$$
, $\chi_{\sum}'^d(G) \leq \left\lceil rac{\Delta(G)}{d} \right\rceil + 2$.

ightarrow Generalization of the 1-2-3 Conjecture and its proper variant

- 1. Trees, complete graphs $(d = 2 \text{ and } d \in \{ \lceil \frac{n-1}{2} \rceil, \dots, n-2 \})$
- 2. Subcubic graphs and beyond
- 3. General bound of 7 for $d = \Delta(G) 1$

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected
$$G \not\in \{K_2, C_5\}$$
, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

- \rightarrow Generalization of the 1-2-3 Conjecture and its proper variant
- 1. Trees, complete graphs $(d = 2 \text{ and } d \in \{ \lceil \frac{n-1}{2} \rceil, \dots, n-2 \})$
- 2. Subcubic graphs and beyond
- 3. General bound of 7 for $d = \Delta(G) 1$

Open questions

- Complete graphs: $d \in \{3, \ldots, \lceil \frac{n-1}{2} \rceil 1\}$, exact value for $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2\}$
- Other classes, stronger general bounds

Conjecture (D., Duchêne, Parreau, Sidorowicz, 2022)

For every connected
$$G \not\in \{K_2, C_5\}$$
, $\chi_{\sum}^{\prime d}(G) \leq \left\lceil \frac{\Delta(G)}{d} \right\rceil + 2$.

 \rightarrow Generalization of the 1-2-3 Conjecture and its proper variant

- 1. Trees, complete graphs $(d = 2 \text{ and } d \in \{ \lceil \frac{n-1}{2} \rceil, \dots, n-2 \})$
- 2. Subcubic graphs and beyond
- 3. General bound of 7 for $d = \Delta(G) 1$

Open questions

- Complete graphs: $d \in \{3, \ldots, \lceil \frac{n-1}{2} \rceil 1\}$, exact value for $d \in \{\lceil \frac{n-1}{2} \rceil, \ldots, n-2\}$
- Other classes, stronger general bounds