Path Covers of Temporal Graphs:
When is Dilworth dynamic?

Dibyayan Chakraborty!, Antoine Dailly?,
Florent Foucaud?, Ralf Klasing®

LIFO Seminar - February 26th 2024

1 School of Computing, University of Leeds
2 LIMOS, Clermont-Ferrand
3 LaBRI, Bordeaux

ANR GRALMECO and TEMPOGRAL

were B LIMOS ¢~ LaBRI

1/21

Introduction: Dilworth's theorem

{1,2,3} {1,2,4}

/]

{1,2}

1 {2 4

2/21

Introduction: Dilworth's theorem

Theorem [Dilworth, 1950] |
@ : The minimum size of a chain partition of a

0 finite poset is equal to the maximum size of
. an antichain of this poset.

{1,2,3} {1,2,4}

|
2 (4

2/21

Introduction: Dilworth's theorem

transitive DAG is equal to the maximum size
of an antichain of this DAG.

, Theorem [Dilworth, 1950] |
@ The minimum size of a path partition of a
-\

Restated for graphs...

2,3} {1,2,4}

Km}

2/21

Introduction: Dilworth's theorem

Theorem [Dilworth, 1950] |

The minimum size of a path cover of a DAG
is equal to the maximum size of an antichain
of this DAG.

Restated for graphs...
.. and covers.

2,3} {1,2,4}

Km}

2/21

Introduction: Dilworth's theorem

Theorem [Dilworth, 1950] |

The minimum size of a path cover of a DAG
is equal to the maximum size of an antichain
of this DAG.

Restated for graphs...
.. and covers.

Algorithms:

» Algorithmic proof (polynomial time)
[Fulkerson, 1956]

2/21

Introduction: Dilworth's theorem

Theorem [Dilworth, 1950]]

The minimum size of a path cover of a DAG
is equal to the maximum size of an antichain
of this DAG.

Restated for graphs...
.. and covers.

Algorithms:

» Algorithmic proof (polynomial time)
[Fulkerson, 1956]

» Many improvements since then, now
quasi-linear [Caceres, ICALP 2023]

2/21

Introduction: Dilworth's theorem

Theorem [Dilworth, 1950]]

The minimum size of a path cover of a DAG

is equal to the maximum size of an antichain
of this DAG.

Restated for graphs...
.. and covers.

Algorithms:

» Algorithmic proof (polynomial time)
[Fulkerson, 1956]

» Many improvements since then, now
quasi-linear [Caceres, ICALP 2023]

» NP-hard on general graphs

2/21

Introduction: temporal (di)graphs
D =(V,A1, A, ..., Ax) [Ferreira & Viennot, 2002]

//

/M\O\NOOZOOOI

t=4

3/21

Introduction: temporal (di)graphs
D =(V,A1, A, ..., Ax) [Ferreira & Viennot, 2002]

s //,

/::\O\NOOZOOOI

t=3 t=4

D = (V,A,\) [Kempe, Kleinberg & Kumar, 2000]

3/21

Introduction: temporal (di)graphs
D =(V,A1, A, ..., Ax) [Ferreira & Viennot, 2002]

s //D

/::\O\NOOZOOOI

t=3 t=4

D = (V,A,\) [Kempe, Kleinberg & Kumar, 2000]

Many results and applications in distributed algorithms, dynamic
networks (transportation, social, biological...). More recently, gain
of interest from the graph algorithms community.

3/21

A few definitions for this talk

» A temporal DAG (resp. tree...) is a temporal (di)graph whose
underlying (di)graph is a DAG (resp. tree...).

4/21

A few definitions for this talk

» A temporal DAG (resp. tree...) is a temporal (di)graph whose
underlying (di)graph is a DAG (resp. tree...).
» (Directed) temporal path : strictly increasing time labels.

4/21

A few definitions for this talk

» A temporal DAG (resp. tree...) is a temporal (di)graph whose
underlying (di)graph is a DAG (resp. tree...).

» (Directed) temporal path : strictly increasing time labels.

» A temporal path occupies a vertex during interval [t1, to] if it
reaches it at time t; and leaves it at time t».

4/21

A few definitions for this talk

» A temporal DAG (resp. tree...) is a temporal (di)graph whose
underlying (di)graph is a DAG (resp. tree...).

» (Directed) temporal path : strictly increasing time labels.

» A temporal path occupies a vertex during interval [t1, to] if it
reaches it at time t; and leaves it at time t».

» Two temporal paths intersect if they occupy the same vertex
during non-disjoint intervals.

()/////////,//" 1
) 3

4/21

A few definitions for this talk

» A temporal DAG (resp. tree...) is a temporal (di)graph whose
underlying (di)graph is a DAG (resp. tree...).

» (Directed) temporal path : strictly increasing time labels.

» A temporal path occupies a vertex during interval [t1, to] if it
reaches it at time t; and leaves it at time t».

» Two temporal paths intersect if they occupy the same vertex
during non-disjoint intervals. They are temporally disjoint if
they do not intersect.

4/21

A few definitions for this talk

» A temporal DAG (resp. tree...) is a temporal (di)graph whose
underlying (di)graph is a DAG (resp. tree...).

» (Directed) temporal path : strictly increasing time labels.

» A temporal path occupies a vertex during interval [t1, to] if it
reaches it at time t; and leaves it at time t».

» Two temporal paths intersect if they occupy the same vertex
during non-disjoint intervals. They are temporally disjoint if
they do not intersect.

» Two vertices are temporally connected if there is a temporal
path between them.

4/21

A few definitions for this talk

>

A temporal DAG (resp. tree...) is a temporal (di)graph whose
underlying (di)graph is a DAG (resp. tree...).

(Directed) temporal path : strictly increasing time labels.

A temporal path occupies a vertex during interval [t1, tp] if it
reaches it at time t; and leaves it at time t».

Two temporal paths intersect if they occupy the same vertex
during non-disjoint intervals. They are temporally disjoint if
they do not intersect.

Two vertices are temporally connected if there is a temporal
path between them.

A temporal antichain is a set of vertices who are pairwise not

temporally connected.
3

2 4/21

Our incentive for temporally disjoint paths
History

» Several papers on paths and journeys in temporal graphs

» Temporally disjoint paths are a good model for dynamic
MuLTl AGENT PATH FINDING [Stern et al., 2019]

5/21

Our incentive for temporally disjoint paths

History

>
|

Several papers on paths and journeys in temporal graphs

Temporally disjoint paths are a good model for dynamic
MuLTl AGENT PATH FINDING [Stern et al., 2019]

TEMPORALLY DI1SJOINT WALKS: W([1]-hard and XP
(number of walks) [Klobas et al., [JCAI 2021]
TEMPORALLY DISJOINT PATHS: NP-hard and W([1]-hard
(number of vertices) on temporal stars [Kunz, Molter &
Zehavi, 1JCAI 2023]

5/21

A temporal Dilworth's theorem?

Dilworth property]

In a (transitive) DAG, the minimum size of a
path partition/cover is equal to the maximum
size of a antichain.

6/21

A temporal Dilworth's theorem?

Temporal Dilworth property]

In a temporal DAG, the minimum size of a
temporal path partition/cover is equal to the
maximum size of a temporal antichain.

6/21

A temporal Dilworth's theorem?
P SREER Y

Temporal Dilworth property]

In a temporal DAG, the minimum size of a
temporal path partition/cover is equal to the
maximum size of a temporal antichain.

Two problems:

Temporal Path Temporal Path Partition/Temporally
Cover (TPCQ) Disjoint Path Cover (TD-PC)

6/21

A temporal Dilworth's theorem?

Temporal Dilworth property]

In a temporal DAG, the minimum size of a
temporal path partition/cover is equal to the
maximum size of a temporal antichain.

Two problems:

Temporal Path Temporal Path Partition/Temporally
Cover (TPQ) Disjoint Path Cover (TD-PC)

Two questions:

Which temporal DAGs have What is the complexity
the Dilworth property? of those problems?

= Combinatorial aspect = Algorithmic aspect

6/21

Our results

Temporal class TPC TD-PC
Oriented paths O(¢n) O(¢n)
Rooted trees O(n?) O(en?)
Oriented trees O(¢n? 4 n3) NP-hard

DAGs* NP-hard NP-hard

XP (tw and tmax) FPT (tw and tmax)

nO(tw2 tmax [0g(tW tmax)) 2(9(tw2 tmax [0g(tW tmax)) n

Digraphs

* planar, subcubic, bipartite, girth 10, £ = 1, tmax = 2

n = number of vertices
¢ = number of (unsorted) time labels per arc
tmax = total number of time-steps

For those specific classes, polynomial-time < Dilworth property.

7/21

Temporal lines

Theorem [CDFK, 2024—&—]]

Temporal oriented lines have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n).

Algorithm

Take a maximum-length temporal path containing a leaf.

8/21

Temporal lines

Theorem [CDFK, 2024—&—]]

Temporal oriented lines have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n).

Algorithm

Take a maximum-length temporal path containing a leaf.

8/21

Temporal lines

Theorem [CDFK, 2024—&—]]

Temporal oriented lines have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n).

Algorithm

Take a maximum-length temporal path containing a leaf.

2,4

1,3 1,2,3

8/21

Temporal lines

Theorem [CDFK, 2024—&—]]

Temporal oriented lines have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n).

Algorithm

Take a maximum-length temporal path containing a leaf.

8/21

Temporal lines

Theorem [CDFK, 2024—&—]]

Temporal oriented lines have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n).

Algorithm

Take a maximum-length temporal path containing a leaf.

O,,,,

Iterate. The successive leaves are a temporal antichain!

8/21

Temporal rooted trees

Theorem [CDFK, 2024+])

Temporal rooted trees have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n?).

9/21

Temporal rooted trees

Theorem [CDFK, 2024+])

Temporal rooted trees have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n?).

Algorithm 1 2

» Same principle as lines

9/21

Temporal rooted trees

Theorem [CDFK, 2024+])

Temporal rooted trees have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n?).

Algorithm

» Same principle as lines

9/21

Temporal rooted trees

Theorem [CDFK, 2024+])

Temporal rooted trees have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n?).

Algorithm

» Same principle as lines: successive
leaves are a temporal antichain

9/21

Temporal rooted trees

Theorem [CDFK, 2024+])

Temporal rooted trees have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n?).

Algorithm
» Same principle as lines: successive
leaves are a temporal antichain
» Starting from the root, resolve
conflicts: if two paths intersect, either
they start at the same vertex

9/21

Temporal rooted trees

Theorem [CDFK, 2024+])

Temporal rooted trees have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n?).

Algorithm
» Same principle as lines: successive
leaves are a temporal antichain
» Starting from the root, resolve
conflicts: if two paths intersect, either
they start at the same vertex

9/21

Temporal rooted trees

Theorem [CDFK, 2024+])

Temporal rooted trees have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n?).

Algorithm

» Same principle as lines: successive
leaves are a temporal antichain

» Starting from the root, resolve
conflicts: if two paths intersect, either
they start at the same vertex, or one
starts before (in the underlying tree)
the other

9/21

Temporal rooted trees

Theorem [CDFK, 2024+])

Temporal rooted trees have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n?).

Algorithm

» Same principle as lines: successive
leaves are a temporal antichain

» Starting from the root, resolve
conflicts: if two paths intersect, either
they start at the same vertex, or one
starts before (in the underlying tree)
the other

9/21

Path Cover of temporal oriented trees (1) Back to static

Theorem [CDFK, 2024—&—]]

Temporal oriented trees have the Dilworth property for TPC, and
we can solve TPC in time O(¢n? + n3).

10/21

Path Cover of temporal oriented trees (1) Back to static

Theorem [CDFK, 2024—&—]]

Temporal oriented trees have the Dilworth property for TPC, and
we can solve TPC in time O(¢n? + n3).

Algorithm

» Construct an auxiliary connectivity graph: two vertices are
adjacent < they are temporally connected in the tree

10/21

Path Cover of temporal oriented trees (1) Back to static

Theorem [CDFK, 2024—&—]]

Temporal oriented trees have the Dilworth property for TPC, and
we can solve TPC in time O(¢n? + n3).

Algorithm

» Construct an auxiliary connectivity graph: two vertices are
adjacent < they are temporally connected in the tree

7= —

Il
(o)}

Clique in G & Temporal Path in 7.

10/21

Path Cover of temporal oriented trees (1) Back to static

Theorem [CDFK, 2024—&—]]

Temporal oriented trees have the Dilworth property for TPC, and
we can solve TPC in time O(¢n? + n3).

Algorithm

» Construct an auxiliary connectivity graph: two vertices are
adjacent < they are temporally connected in the tree

7= —

Il
(o)}

Clique Cover in G < Temporal Path Cover in T.

10/21

Path Cover of temporal oriented trees (2) Holes

There are no holes in the connectivity graph.]

11/21

Path Cover of temporal oriented trees (2) Holes

There are no holes in the connectivity graph.]

11/21

Path Cover of temporal oriented trees (2) Holes

There are no holes in the connectivity graph.]

The vertices of the hole are leaves of a con-
nected subtree T'.

11/21

Path Cover of temporal oriented trees (2) Holes

There are no holes in the connectivity graph.]

The vertices of the hole are leaves of a con-
nected subtree T'.

11/21

Path Cover of temporal oriented trees (2) Holes

There are no holes in the connectivity graph.]

The vertices of the hole are leaves of a con-
nected subtree T'.

11/21

Path Cover of temporal oriented trees (2) Holes

There are no holes in the connectivity graph.]

The vertices of the hole are leaves of a con-
nected subtree T'.

11/21

Path Cover of temporal oriented trees (2) Holes

There are no holes in the connectivity graph.]

Claim §

The vertices of the hole are leaves of a con-
nected subtree T'.

Claim .

Alternating between in-arcs and out-arcs from
and to T.

. J

11/21

Path Cover of temporal oriented trees (2) Holes

There are no holes in the connectivity graph.]

Claim §

The vertices of the hole are leaves of a con-
nected subtree T'.

Claim .

Alternating between in-arcs and out-arcs from
and to T’. = No odd hole

. J

11/21

Path Cover of temporal oriented trees (2) Holes

There are no holes in the connectivity graph.]

Claim §

The vertices of the hole are leaves of a con-
nected subtree T'.

o

Claim

Alternating between in-arcs and out-arcs from
and to T’. = No odd hole

Claim . T

No even hole either (using Helly property and
vertex-intersection of temporal paths).

. J

11/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.]

12/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.]

VN
A7

12/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.]

12/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.]

12/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.]

12/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.]

12/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.]

12/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.]

12/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.]

12/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.]

12/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.]

= The temporal path of this
edge does not exist in T.
12/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.

AT
G o % T
% o—o—o—0—0
Case 2
Case 1
A)
| @0~ °

= The temporal path of this
edge does not exist in T.

12/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.]

>

,
N
!

B
1))

N

%

= The temporal path of this
edge does not exist in 7.

12/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.]

= Each has to be complete bi-
= The temporal path of this partite in G

edge does not exist in 7.
12/21

Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.]

) = Each has to be complete bi-

= The temporal path of this partite in G, only possible if or-

edge does not exist in 7. der < 7, which we then manage.
12/21

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free

13/21

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free = It is weakly
chordal (subclass of perfect)

13/21

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free = It is weakly
chordal (subclass of perfect) = Dilworth property!

13/21

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free = It is weakly
chordal (subclass of perfect) = Dilworth property!

Theorem [Hayward, Spinrad & Sritharan, 2000]]

There is a O(mn) algorithm for Clique Cover in weakly chordal
graphs with n vertices and m edges.

13/21

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free = It is weakly
chordal (subclass of perfect) = Dilworth property!

Theorem [Hayward, Spinrad & Sritharan, 2000]]

There is a O(mn) algorithm for Clique Cover in weakly chordal
graphs with n vertices and m edges.

= Connectivity graph in O(n?(), then [HSS00] in O(n? x n).

13/21

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free = It is weakly
chordal (subclass of perfect) = Dilworth property!

Theorem [Hayward, Spinrad & Sritharan, 2000]]

There is a O(mn) algorithm for Clique Cover in weakly chordal
graphs with n vertices and m edges.

= Connectivity graph in O(n?(), then [HSS00] in O(n? x n).

Remark
The connectivity graph is not
chordal (it may contain ().

13/21

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free = It is weakly
chordal (subclass of perfect) = Dilworth property!

Theorem [Hayward, Spinrad & Sritharan, 2000]]

There is a O(mn) algorithm for Clique Cover in weakly chordal
graphs with n vertices and m edges.

= Connectivity graph in O(n?(), then [HSS00] in O(n? x n).

Remark
The connectivity graph is not
chordal (it may contain ().

13/21

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free = It is weakly
chordal (subclass of perfect) = Dilworth property!

Theorem [Hayward, Spinrad & Sritharan, 2000]]

There is a O(mn) algorithm for Clique Cover in weakly chordal
graphs with n vertices and m edges.

= Connectivity graph in O(n?¢), then [HSS00] in O(n? x n)

Remark
The connectivity graph is not %

chordal (it may contain ().

13/21

Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+])

TD-PC is NP-hard on temporal oriented trees.]

14/21

Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+])

TD-PC is NP-hard on temporal oriented trees.]

Reduction from UNARY BIN PACKING (inspired by [KMZ23])

Items of size x1,...,X, ; b bins of size B

14/21

Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+])

TD-PC is NP-hard on temporal oriented trees.]
Reduction from UNARY BIN PACKING (inspired by [KMZ23])
Items of size xq,...,X, ; b bins of size B

b vertices
@\@\ Each (s;, t;) = one bin
(©)
© ®) ®

b vertices

14/21

Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+])

TD-PC is NP-hard on temporal oriented trees.]
Reduction from UNARY BIN PACKING (inspired by [KMZ23])
Items of size xq,...,X, ; b bins of size B

} B

Each (sj, tj) = one bin

Each bin must be filled

7oy } B vertices
per t;

14/21

Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+])

TD-PC is NP-hard on temporal oriented trees.]

Reduction from UNARY BIN PACKING (inspired by [KMZ23])

Items of size xq,...,X, ; b bins of size B

0 e o e D

Each (sj, tj) = one bin
Each bin must be filled

(vi, w;) = bins un-
used by item i

!

FOEaER
up'st) 5's10000 14'5{ 0000 ba verl?&es b vell'gg

14/21

Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+])

TD-PC is NP-hard on temporal oriented trees.]

Reduction from UNARY BIN PACKING (inspired by [KMZ23])

Items of size xq,...,X, ; b bins of size B

Each (sj, tj) = one bin
Each bin must be filled

(vi, w;) = bins un-
used by item i

We create temporal layers
for each item i

14/21

Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+])

TD-PC is NP-hard on temporal oriented trees.]

Reduction from UNARY BIN PACKING (inspired by [KMZ23])

Items of size xq,...,X, ; b bins of size B

Each (sj, tj) = one bin
Each bin must be filled
(vi, w;) = bins un-
used by item i
We create temporal layers
for each item i
. W,‘,"s Here, X1 = 3

14/21

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+])

Temporal oriented trees do not have the TD-Dilworth property.

15/21

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+])

Temporal oriented trees do not have the TD-Dilworth property.

15/21

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+])

Temporal oriented trees do not have the TD-Dilworth property.

15/21

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+])

Temporal oriented trees do not have the TD-Dilworth property.

15/21

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+])

Temporal oriented trees do not have the TD-Dilworth property.
Furthermore, the gap between antichain and partition can be
arbitrarily large in temporal DAGs.

15/21

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+])

Furthermore, the gap between antichain and partition can be

Temporal oriented trees do not have the TD-Dilworth property.
arbitrarily large in temporal DAGs.

15/21

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+])

Furthermore, the gap between antichain and partition can be

Temporal oriented trees do not have the TD-Dilworth property.
arbitrarily large in temporal DAGs.

15/21

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+])

Temporal oriented trees do not have the TD-Dilworth property.
Furthermore, the gap between antichain and partition can be
arbitrarily large in temporal DAGs.

15/21

Parameterized complexity: reminder

Definition

For an input of size n with a parameter k and a computable
function f:
» FPT algorithm < f(k)n®®)

» XP algorithm < nf(k)

16/21

Parameterized complexity: reminder

Definition

|\

For an input of size n with a parameter k and a computable
function f:

» FPT algorithm < f(k)n®®)

» XP algorithm < nf(K)

N

|\

,_[Nice tree decomposition of G(V, E) [Kloks, 1994]]

A rooted tree T, each node v € T has a bag X, C V, such that:

» forac V, {v : a€ X,} is a connected subtree of T

» if ab € E, then dv such that a,b € X,

» introduce node v < one child v s.t. X, = X,, Ua, a€ X,
» forget node v < one child v; s.it. X, = X, \ a, a€ X,

» join node v < two children vy, vo s.t. X, = X,;, = X,,

Leaf and root bags are empty, tw = max size of a bag -1

16/21

Parameterized complexity for TD-PC (1) Preliminaries

Theorem [CDFK, 2024+])

TD-PCis FPT w.r.t. tw and tmax (total number of time-steps)]

Dynamic programing on a nice tree decomposition

17/21

Parameterized complexity for TD-PC (1) Preliminaries

Theorem [CDFK, 2024+])

TD-PCis FPT w.r.t. tw and tynax (total number of time-steps)]

Dynamic programing on a nice tree decomposition

Observation

Any arc of D appears in at most tnax paths of a TD-PC = At
most p = (t;’) - tmax temporally disjoint paths contain at least one
arc from a given bag

17/21

Parameterized complexity for TD-PC (1) Preliminaries

Theorem [CDFK, 2024+])

TD-PCis FPT w.r.t. tw and tynax (total number of time-steps)]

Dynamic programing on a nice tree decomposition

Observation

Any arc of D appears in at most tnax paths of a TD-PC = At
most p = (t;") - tmax temporally disjoint paths contain at least one
arc from a given bag

For simplicity, duplicate the arcs such that each has only one time
label (so a TD-PC uses arc-disjoint paths)

17/21

Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v

= At most
types for any node

18/21

Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v

» A partition Qo, Q1, ..., Q: of the arcs inside X, (Q; for i # 0
is in a temporal path P; of a TD-PC, @ is the unused arcs)

= At most pP
types for any node

18/21

Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v
» A partition Qo, Q1, ..., Q: of the arcs inside X, (Q; for i # 0
is in a temporal path P; of a TD-PC, Qq is the unused arcs)

» For each Q;, the vertices V; of X, that are in P; (endpoints of
arcs in Q; and those not incident with arcs in Q;)

= At most pP x 2w+l
types for any node

18/21

Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v
» A partition Qo, Q1, ..., Q: of the arcs inside X, (Q; for i # 0
is in a temporal path P; of a TD-PC, Qq is the unused arcs)

» For each Q;, the vertices V; of X, that are in P; (endpoints of
arcs in Q; and those not incident with arcs in Q;)

» For each V;, their order of occupation by P;

= At most pP x 2+ x (tw +1)!
types for any node

18/21

Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v
» A partition Qo, Q1, ..., Q: of the arcs inside X, (Q; for i # 0
is in a temporal path P; of a TD-PC, Qq is the unused arcs)

» For each Q;, the vertices V; of X, that are in P; (endpoints of
arcs in Q; and those not incident with arcs in Q;)

» For each V;, their order of occupation by P;

» For each Q;, the vertices in V; with one or two arcs outside of
Xy, the time labels of those arcs, and whether the neighbour
appears below or above v in the decomposition

= At most pP x 2MHL x (tw +1)1 x 2WH2 x ¢2
types for any node

18/21

Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v
» A partition Qo, Q1, ..., Q: of the arcs inside X, (Q; for i # 0
is in a temporal path P; of a TD-PC, Qq is the unused arcs)

» For each Q;, the vertices V; of X, that are in P; (endpoints of
arcs in Q; and those not incident with arcs in Q;)

» For each V;, their order of occupation by P;

» For each Q;, the vertices in V; with one or two arcs outside of
Xy, the time labels of those arcs, and whether the neighbour
appears below or above v in the decomposition

= At most pP x 2w+l x (tw +1)! x otw+2 o tr%‘nax e 20(plogp)
types for any node

18/21

Parameterized complexity for TD-PC (3) Consistency

Consistency of a type

» The ordered vertices V;, the arcs of Q;, and the information
about the arcs going outside of X, induce temporal paths

» The arcs going outside of X, exist in the digraph and their
labels are compatible with the order

» Every vertex of X, isiin a V;

Now, we compute from the bottom-up, maintaining consistency.

19/21

Parameterized complexity for TD-PC (4) Computation
Dynamic programing using consistent types of partial solutions

» Leaf node: No partial solution since empty

20/21

Parameterized complexity for TD-PC (4) Computation
Dynamic programing using consistent types of partial solutions

» Leaf node: No partial solution since empty

» Introduce node: Check compatibility with the child (either a
is in a path in the type, or a is added as a single-vertex path)

20/21

Parameterized complexity for TD-PC (4) Computation
Dynamic programing using consistent types of partial solutions

» Leaf node: No partial solution since empty

» Introduce node: Check compatibility with the child (either a
is in a path in the type, or a is added as a single-vertex path)

» Forget node: Check compatibility with child (the types are
the ones obtained by removing the vertex a), discard those
where a has an arc going above

20/21

Parameterized complexity for TD-PC (4) Computation
Dynamic programing using consistent types of partial solutions

» Leaf node: No partial solution since empty

» Introduce node: Check compatibility with the child (either a
is in a path in the type, or a is added as a single-vertex path)

» Forget node: Check compatibility with child (the types are
the ones obtained by removing the vertex a), discard those
where a has an arc going above

» Join node: Check compatibility of the children (partition of
arcs, order of vertices, neighbours outside of the bag, are they
above or below in the decomposition, ... = all have to agree),
don’t count twice the paths that intersect the bag

20/21

Parameterized complexity for TD-PC (4) Computation
Dynamic programing using consistent types of partial solutions

» Leaf node: No partial solution since empty

» Introduce node: Check compatibility with the child (either a
is in a path in the type, or a is added as a single-vertex path)

» Forget node: Check compatibility with child (the types are
the ones obtained by removing the vertex a), discard those
where a has an arc going above

» Join node: Check compatibility of the children (partition of
arcs, order of vertices, neighbours outside of the bag, are they
above or below in the decomposition, ... = all have to agree),
don’t count twice the paths that intersect the bag

Running time 20(plogp)p 5o FPT w.rt. p = f(tw, tmax)

20/21

Parameterized complexity for TD-PC (4) Computation
Dynamic programing using consistent types of partial solutions

» Leaf node: No partial solution since empty

» Introduce node: Check compatibility with the child (either a
is in a path in the type, or a is added as a single-vertex path)

» Forget node: Check compatibility with child (the types are
the ones obtained by removing the vertex a), discard those
where a has an arc going above

» Join node: Check compatibility of the children (partition of
arcs, order of vertices, neighbours outside of the bag, are they
above or below in the decomposition, ... = all have to agree),
don’t count twice the paths that intersect the bag

Running time 20(plogp)p 5o FPT w.rt. p = f(tw, tmax)
And for TPC?

Same principle, but the paths can intersect

20/21

Parameterized complexity for TD-PC (4) Computation
Dynamic programing using consistent types of partial solutions

» Leaf node: No partial solution since empty

» Introduce node: Check compatibility with the child (either a
is in a path in the type, or a is added as a single-vertex path)

» Forget node: Check compatibility with child (the types are
the ones obtained by removing the vertex a), discard those
where a has an arc going above

» Join node: Check compatibility of the children (partition of
arcs, order of vertices, neighbours outside of the bag, are they
above or below in the decomposition, ... = all have to agree),
don’t count twice the paths that intersect the bag

Running time 20(plogp)p 5o FPT w.rt. p = f(tw, tmax)
And for TPC?

Same principle, but the paths can intersect = More information in
type: how many times in the solution does Q; appear

20/21

Parameterized complexity for TD-PC (4) Computation
Dynamic programing using consistent types of partial solutions

» Leaf node: No partial solution since empty

» Introduce node: Check compatibility with the child (either a
is in a path in the type, or a is added as a single-vertex path)

» Forget node: Check compatibility with child (the types are
the ones obtained by removing the vertex a), discard those
where a has an arc going above

» Join node: Check compatibility of the children (partition of
arcs, order of vertices, neighbours outside of the bag, are they
above or below in the decomposition, ... = all have to agree),
don’t count twice the paths that intersect the bag

Running time 20(plogp)p 5o FPT w.rt. p = f(tw, tmax)
And for TPC?
Same principle, but the paths can intersect = More information in

type: how many times in the solution does Q; appear = Running
time kO(P1ogP) h where k € O(n) is the solution size = XP w.r.t. p 20/21

Conclusion and future work

Temporal class TPC TD-PC
Oriented paths O(¢n) O(¢n)
Rooted trees O(¢n?) O(¢n?)
Oriented trees O(n? + n3) NP-hard

DAGs NP-hard NP-hard

. XP (tw and t, FPT (tw and t
Digraphs no(t\,SQ tmax |og(th?ja)x)) 20(tw? gmax log(tw t:aaxx)))n

21/21

Conclusion and future work

Temporal class TPC TD-PC
Oriented paths O(¢n) O(¢n)
Rooted trees O(¢n?) O(¢n?)
Oriented trees O(¢n? + n3) NP-hard
DAGs NP-hard NP-hard
Digraphs Joyon Mhme) - ERT (wand e

Perspectives

» Better FPT, FPT for TPC?

» Approximation? Enumeration?

» Classes of oriented trees where
TD-PC is polynomial?

» Other temporal problems that can

be reduced to a static problem?
21/21

Conclusion and future work

Temporal class TPC TD-PC
Oriented paths O(¢n) O(ln)
Rooted trees O(¢n?) O(¢n?)
Oriented trees O(n? + n3) NP-hard

DAGs NP-hard NP-hard

XP (tw and tmax) FPT (tw and tmax)

O(tw? tmax log(tw tmax)) 2(9 (tw? tmax log(tw tmax)n

Digraphs

Perspectives
> Better FPT, FPT for TPC? Xé 5[{
» Approximation? Enumeration? oaﬂf'}

» Classes of oriented trees where
TD-PC is polynomial?
» Other temporal problems that can Oi z

be reduced to a static problem?

21/21

