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Introduction: Dilworth’s theorem

The minimum size of a chain partition of a
is equal to the maximum size of an antichain
of this .p

Theorem [Dilworth, 1950]

Restated for graphs...
... and covers.
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Introduction: Dilworth’s theorem

The minimum size of a path partition of a
transitive DAG is equal to the maximum size
of an antichain of this DAG.p

Theorem [Dilworth, 1950]

Restated for graphs...

... and covers.
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Introduction: Dilworth’s theorem

The minimum size of a path cover of a DAG
is equal to the maximum size of an antichain
of this DAG.p

Theorem [Dilworth, 1950]

Restated for graphs...
... and covers.

Algorithms:

▶ Algorithmic proof (polynomial time)
[Fulkerson, 1956]

▶ Many improvements since then, now
quasi-linear [Caceres, ICALP 2023]

▶ NP-hard on general graphs
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Introduction: temporal (di)graphs
D = (V , A1, A2, . . . , Ak) [Ferreira & Viennot, 2002]

t = 1 t = 2 t = 3 t = 4

D = (V , A, λ) [Kempe, Kleinberg & Kumar, 2000]
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Many results and applications in distributed algorithms, dynamic
networks (transportation, social, biological...). More recently, gain

of interest from the graph algorithms community.
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A few definitions for this talk
▶ A temporal DAG (resp. tree...) is a temporal (di)graph whose

underlying (di)graph is a DAG (resp. tree...).

▶ (Directed) temporal path : strictly increasing time labels.
▶ A temporal path occupies a vertex during interval [t1, t2] if it

reaches it at time t1 and leaves it at time t2.
▶ Two temporal paths intersect if they occupy the same vertex

during non-disjoint intervals. They are temporally disjoint if
they do not intersect.

▶ Two vertices are temporally connected if there is a temporal
path between them.

▶ A temporal antichain is a set of vertices who are pairwise not
temporally connected.
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Our incentive for temporally disjoint paths
History
▶ Several papers on paths and journeys in temporal graphs
▶ Temporally disjoint paths are a good model for dynamic

Multi Agent Path Finding [Stern et al., 2019]
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▶ Temporally Disjoint Walks: W[1]-hard and XP
(number of walks) [Klobas et al., IJCAI 2021]

▶ Temporally Disjoint Paths: NP-hard and W[1]-hard
(number of vertices) on temporal stars [Kunz, Molter &
Zehavi, IJCAI 2023]
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A temporal Dilworth’s theorem?

In a (transitive) DAG, the minimum size of a
path partition/cover is equal to the maximum
size of a antichain.p

Dilworth property

Two problems:

Temporal Path
Cover (TPC)

Temporal Path Partition/Temporally
Disjoint Path Cover (TD-PC)

Two questions:

Which temporal DAGs have
the Dilworth property?

⇒ Combinatorial aspect

What is the complexity
of those problems?

⇒ Algorithmic aspect
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Our results

Temporal class TPC TD-PC

Oriented paths O(ℓn) O(ℓn)
Rooted trees O(ℓn2) O(ℓn2)

Oriented trees O(ℓn2 + n3) NP-hard
DAGs∗ NP-hard NP-hard

Digraphs XP (tw and tmax)
nO(tw2 tmax log(tw tmax))

FPT (tw and tmax)
2O(tw2 tmax log(tw tmax))n

∗ planar, subcubic, bipartite, girth 10, ℓ = 1, tmax = 2

n = number of vertices
ℓ = number of (unsorted) time labels per arc

tmax = total number of time-steps

For those specific classes, polynomial-time ⇔ Dilworth property.
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Temporal lines

Temporal oriented lines have the Dilworth property, and we can
solve TPC and TD-PC in time O(ℓn).

Theorem [CDFK, 2024+]

Algorithm
Take a maximum-length temporal path containing a leaf.

1,3

1,3

1,2,3

1,2,3

2,4

Iterate. The successive leaves are a temporal antichain!
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Temporal rooted trees

Temporal rooted trees have the Dilworth property, and we can
solve TPC and TD-PC in time O(ℓn2).

Theorem [CDFK, 2024+]

Algorithm
▶ Same principle as lines

: successive
leaves are a temporal antichain

▶ Starting from the root, resolve
conflicts: if two paths intersect, either
they start at the same vertex, or one
starts before (in the underlying tree)
the other

1
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Path Cover of temporal oriented trees (1) Back to static

Temporal oriented trees have the Dilworth property for TPC, and
we can solve TPC in time O(ℓn2 + n3).

Theorem [CDFK, 2024+]

Algorithm
▶ Construct an auxiliary connectivity graph: two vertices are

adjacent ⇔ they are temporally connected in the tree

T =

1

2
2,4

3

3

= G

Clique in G ⇔ Temporal Path in T .
Lemma
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Path Cover of temporal oriented trees (2) Holes

There are no holes in the connectivity graph.
Lemma

The vertices of the hole are leaves of a con-
nected subtree T ′.

Claim

Alternating between in-arcs and out-arcs from
and to T ′.

⇒ No odd hole

Claim

No even hole either (using Helly property and
vertex-intersection of temporal paths).

Claim

G

T

T ′
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Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.
Lemma

G

T

Case 1

⇒ The temporal path of this
edge does not exist in T .

Case 2

⇒ Each has to be complete bi-
partite in G , only possible if or-

der ≤ 7, which we then manage.

⇒ Each has to be complete bi-
partite in G , only possible if or-

der ≤ 7, which we then manage.
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Path Cover of temporal oriented trees (4) Conclusion

The connectivity graph is (hole,antihole)-free

⇒ It is weakly
chordal (subclass of perfect)

⇒ Dilworth property!

Lemmas

There is a O(mn) algorithm for Clique Cover in weakly chordal
graphs with n vertices and m edges.

Theorem [Hayward, Spinrad & Sritharan, 2000]

⇒ Connectivity graph in O(n2ℓ), then [HSS00] in O(n2 × n).

Remark
The connectivity graph is not
chordal (it may contain C4).

1 2

2 1
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Path Partition of temporal oriented trees: NP-hardness

TD-PC is NP-hard on temporal oriented trees.

Theorem [CDFK, 2024+]

Reduction from Unary Bin Packing (inspired by [KMZ23])
Items of size x1, . . . , xn ; b bins of size B

c

s1 s2 s3

t1 t2 t3

b vertices

b vertices

r j
1’s

uj
1’s

r j
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r j
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1 ’s

. . .
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7,9,11

10,12,14

13,15,17

16,18,20

3,5,9,11,15,17

4,6,10,12,16,18

Each (si , ti) ≡ one bin

Each bin must be filled
(vi , wi) ≡ bins un-

used by item i
We create temporal layers

for each item i
Here, x1 = 3
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What about the Dilworth property in those NP-hard cases?

Temporal oriented trees do not have the TD-Dilworth property.

Furthermore, the gap between antichain and partition can be
arbitrarily large in temporal DAGs.

Theorem [CDFK, 2024+]
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Parameterized complexity: reminder

For an input of size n with a parameter k and a computable
function f :
▶ FPT algorithm ⇔ f (k)nO(1)

▶ XP algorithm ⇔ nf (k)

Definition

A rooted tree T, each node v ∈ T has a bag Xv ⊆ V , such that:
▶ for a ∈ V , {v : a ∈ Xv } is a connected subtree of T
▶ if ab ∈ E , then ∃v such that a, b ∈ Xv
▶ introduce node v ⇔ one child v1 s.t. Xv = Xv1 ∪ a, a ∈ Xv
▶ forget node v ⇔ one child v1 s.t. Xv = Xv1 \ a, a ∈ Xv1

▶ join node v ⇔ two children v1, v2 s.t. Xv = Xv1 = Xv2

Leaf and root bags are empty, tw = max size of a bag -1

Nice tree decomposition of G(V , E ) [Kloks, 1994]
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Parameterized complexity for TD-PC (1) Preliminaries

TD-PC is FPT w.r.t. tw and tmax (total number of time-steps)

Theorem [CDFK, 2024+]

Dynamic programing on a nice tree decomposition

Observation
Any arc of D appears in at most tmax paths of a TD-PC ⇒ At
most p =

(tw
2

)
· tmax temporally disjoint paths contain at least one

arc from a given bag
For simplicity, duplicate the arcs such that each has only one time
label (so a TD-PC uses arc-disjoint paths)
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Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v

▶ A partition Q0, Q1, . . . , Qt of the arcs inside Xv (Qi for i ̸= 0
is in a temporal path Pi of a TD-PC, Q0 is the unused arcs)

▶ For each Qi , the vertices Vi of Xv that are in Pi (endpoints of
arcs in Qi and those not incident with arcs in Qi)

▶ For each Vi , their order of occupation by Pi
▶ For each Qi , the vertices in Vi with one or two arcs outside of

Xv , the time labels of those arcs, and whether the neighbour
appears below or above v in the decomposition

⇒ At most

pp × 2tw +1 × (tw +1)! × 2tw +2 × t2
max ∈ 2O(p log p)

types for any node
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Parameterized complexity for TD-PC (3) Consistency

Consistency of a type
▶ The ordered vertices Vi , the arcs of Qi , and the information

about the arcs going outside of Xv , induce temporal paths
▶ The arcs going outside of Xv exist in the digraph and their

labels are compatible with the order
▶ Every vertex of Xv is in a Vi

Now, we compute from the bottom-up, maintaining consistency.
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Parameterized complexity for TD-PC (4) Computation
Dynamic programing using consistent types of partial solutions
▶ Leaf node: No partial solution since empty

▶ Introduce node: Check compatibility with the child (either a
is in a path in the type, or a is added as a single-vertex path)

▶ Forget node: Check compatibility with child (the types are
the ones obtained by removing the vertex a), discard those
where a has an arc going above

▶ Join node: Check compatibility of the children (partition of
arcs, order of vertices, neighbours outside of the bag, are they
above or below in the decomposition, ... ⇒ all have to agree),
don’t count twice the paths that intersect the bag

Running time 2O(p log p)n, so FPT w.r.t. p = f (tw, tmax)
And for TPC?
Same principle, but the paths can intersect

⇒ More information in
type: how many times in the solution does Qi appear ⇒ Running
time kO(p log p)n where k ∈ O(n) is the solution size ⇒ XP w.r.t. p
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Conclusion and future work
Temporal class TPC TD-PC

Oriented paths O(ℓn) O(ℓn)
Rooted trees O(ℓn2) O(ℓn2)

Oriented trees O(ℓn2 + n3) NP-hard
DAGs NP-hard NP-hard

Digraphs XP (tw and tmax)
nO(tw2 tmax log(tw tmax))

FPT (tw and tmax)
2O(tw2 tmax log(tw tmax))n

Perspectives
▶ Better FPT, FPT for TPC?
▶ Approximation? Enumeration?
▶ Classes of oriented trees where

TD-PC is polynomial?
▶ Other temporal problems that can

be reduced to a static problem?
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