Path Covers of Temporal Graphs: When is Dilworth dynamic?

Dibyayan Chakraborty ${ }^{1}$, Antoine Dailly ${ }^{2}$,

Florent Foucaud ${ }^{2}$, Ralf Klasing ${ }^{3}$

LIFO Seminar - February 26th 2024
${ }^{1}$ School of Computing, University of Leeds
2 LIMOS, Clermont-Ferrand
${ }^{3}$ LaBRI, Bordeaux
ANR GRALMECO and TEMPOGRAL

Introduction: Dilworth's theorem

Introduction: Dilworth's theorem

Theorem [Dilworth, 1950]

The minimum size of a chain partition of a finite poset is equal to the maximum size of an antichain of this poset.

Introduction: Dilworth's theorem

Theorem [Dilworth, 1950]

The minimum size of a path partition of a transitive DAG is equal to the maximum size of an antichain of this DAG.

Restated for graphs...

Introduction: Dilworth's theorem

Theorem [Dilworth, 1950]

The minimum size of a path cover of a DAG is equal to the maximum size of an antichain of this DAG.

Restated for graphs...
... and covers.

Introduction: Dilworth's theorem

Theorem [Dilworth, 1950]

The minimum size of a path cover of a DAG is equal to the maximum size of an antichain of this DAG.

Restated for graphs...
... and covers.
Algorithms:

- Algorithmic proof (polynomial time) [Fulkerson, 1956]

Introduction: Dilworth's theorem

Theorem [Dilworth, 1950]

The minimum size of a path cover of a DAG is equal to the maximum size of an antichain of this DAG.

Restated for graphs...
... and covers.
Algorithms:

- Algorithmic proof (polynomial time) [Fulkerson, 1956]
- Many improvements since then, now quasi-linear [Caceres, ICALP 2023]

Introduction: Dilworth's theorem

Theorem [Dilworth, 1950]

The minimum size of a path cover of a DAG is equal to the maximum size of an antichain of this DAG.

Restated for graphs...
... and covers.
Algorithms:

- Algorithmic proof (polynomial time) [Fulkerson, 1956]
- Many improvements since then, now quasi-linear [Caceres, ICALP 2023]
- NP-hard on general graphs

Introduction: temporal (di)graphs

Introduction: temporal (di)graphs

$\mathcal{D}=\left(V, A_{1}, A_{2}, \ldots, A_{k}\right.$) [Ferreira \& Viennot, 2002]
$\mathcal{D}=(V, A, \lambda)$ [Kempe, Kleinberg \& Kumar, 2000]

Introduction: temporal (di)graphs

Many results and applications in distributed algorithms, dynamic networks (transportation, social, biological...). More recently, gain of interest from the graph algorithms community.

A few definitions for this talk

- A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).

A few definitions for this talk

- A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path: strictly increasing time labels.

A few definitions for this talk

- A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path: strictly increasing time labels.
- A temporal path occupies a vertex during interval $\left[t_{1}, t_{2}\right]$ if it reaches it at time t_{1} and leaves it at time t_{2}.

A few definitions for this talk

- A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path : strictly increasing time labels.
- A temporal path occupies a vertex during interval $\left[t_{1}, t_{2}\right]$ if it reaches it at time t_{1} and leaves it at time t_{2}.
- Two temporal paths intersect if they occupy the same vertex during non-disjoint intervals.

A few definitions for this talk

- A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path : strictly increasing time labels.
- A temporal path occupies a vertex during interval $\left[t_{1}, t_{2}\right]$ if it reaches it at time t_{1} and leaves it at time t_{2}.
- Two temporal paths intersect if they occupy the same vertex during non-disjoint intervals. They are temporally disjoint if they do not intersect.

A few definitions for this talk

- A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path: strictly increasing time labels.
- A temporal path occupies a vertex during interval $\left[t_{1}, t_{2}\right]$ if it reaches it at time t_{1} and leaves it at time t_{2}.
- Two temporal paths intersect if they occupy the same vertex during non-disjoint intervals. They are temporally disjoint if they do not intersect.
- Two vertices are temporally connected if there is a temporal path between them.

A few definitions for this talk

- A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path: strictly increasing time labels.
- A temporal path occupies a vertex during interval $\left[t_{1}, t_{2}\right]$ if it reaches it at time t_{1} and leaves it at time t_{2}.
- Two temporal paths intersect if they occupy the same vertex during non-disjoint intervals. They are temporally disjoint if they do not intersect.
- Two vertices are temporally connected if there is a temporal path between them.
- A temporal antichain is a set of vertices who are pairwise not temporally connected.

Our incentive for temporally disjoint paths

History

- Several papers on paths and journeys in temporal graphs
- Temporally disjoint paths are a good model for dynamic Multi Agent Path Finding [Stern et al., 2019]

Our incentive for temporally disjoint paths

History

- Several papers on paths and journeys in temporal graphs
- Temporally disjoint paths are a good model for dynamic Multi Agent Path Finding [Stern et al., 2019]

- Temporally Disjoint Walks: W[1]-hard and XP (number of walks) [Klobas et al., IJCAI 2021]
- Temporally Disjoint Paths: NP-hard and W[1]-hard (number of vertices) on temporal stars [Kunz, Molter \& Zehavi, IJCAI 2023]

A temporal Dilworth's theorem?

Dilworth property

In a (transitive) DAG, the minimum size of a path partition/cover is equal to the maximum size of a antichain.

A temporal Dilworth's theorem?

Temporal Dilworth property

In a temporal DAG, the minimum size of a temporal path partition/cover is equal to the maximum size of a temporal antichain.

A temporal Dilworth's theorem?

Temporal Dilworth property

In a temporal DAG, the minimum size of a temporal path partition/cover is equal to the maximum size of a temporal antichain.

Two problems:
Temporal Path
Cover (TPC)
Temporal Path Partition/Temporally Disjoint Path Cover (TD-PC)

A temporal Dilworth's theorem?

Temporal Dilworth property

In a temporal DAG, the minimum size of a temporal path partition/cover is equal to the maximum size of a temporal antichain.

Two problems:
Temporal Path
Cover (TPC)

> Temporal Path Partition/Temporally Disjoint Path Cover (TD-PC)

Two questions:

Which temporal DAGs have the Dilworth property?
\Rightarrow Combinatorial aspect

What is the complexity of those problems?
\Rightarrow Algorithmic aspect

Our results

Temporal class	TPC	TD-PC
Oriented paths	$\mathcal{O}(\ell n)$	$\mathcal{O}(\ell n)$
Rooted trees	$\mathcal{O}\left(\ell^{2}\right)$	$\mathcal{O}\left(\ell n^{2}\right)$
Oriented trees	$\mathcal{O}\left(\ell^{2}+n^{3}\right)$	NP-hard
DAGs*	NP-hard	NP-hard
Digraphs	$\begin{aligned} & \text { XP }\left(\operatorname{tw} \text { and } t_{\text {max }}\right) \\ & \left.n^{\mathcal{O}\left(t w^{2} t_{\text {max }}\right.} \log \left(t w t_{\text {max }}\right)\right) \end{aligned}$	$\begin{gathered} \text { FPT }\left(\text { tw and } t_{\text {max }}\right) \\ 2^{\mathcal{O}\left(\mathrm{tw}^{2} t_{\max } \log \left(\mathrm{tw} t_{\text {max }}\right)\right)_{n}} \end{gathered}$

* planar, subcubic, bipartite, girth $10, \ell=1, t_{\max }=2$

$$
\begin{gathered}
n=\text { number of vertices } \\
\ell=\text { number of (unsorted) time labels per arc } \\
t_{\max }=\text { total number of time-steps }
\end{gathered}
$$

For those specific classes, polynomial-time \Leftrightarrow Dilworth property.

Temporal lines

Theorem [CDFK, 2024+]

Temporal oriented lines have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}(\ell n)$.

Algorithm
Take a maximum-length temporal path containing a leaf.

Temporal lines

Theorem [CDFK, 2024+]

Temporal oriented lines have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}(\ell n)$.

Algorithm
Take a maximum-length temporal path containing a leaf.

Temporal lines

Theorem [CDFK, 2024+]

Temporal oriented lines have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}(\ell n)$.

Algorithm
Take a maximum-length temporal path containing a leaf.

Temporal lines

Theorem [CDFK, 2024+]

Temporal oriented lines have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}(\ell n)$.

Algorithm
Take a maximum-length temporal path containing a leaf.

Temporal lines

Theorem [CDFK, 2024+]

Temporal oriented lines have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}(\ell n)$.

Algorithm
Take a maximum-length temporal path containing a leaf.

Iterate. The successive leaves are a temporal antichain!

Temporal rooted trees

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}\left(\ell n^{2}\right)$.

Temporal rooted trees

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}\left(\ell n^{2}\right)$.

Algorithm

- Same principle as lines

Temporal rooted trees

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}\left(\ell n^{2}\right)$.

- Same principle as lines

Temporal rooted trees

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}\left(\ell n^{2}\right)$.

Algorithm

- Same principle as lines: successive leaves are a temporal antichain

Temporal rooted trees

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}\left(\ell n^{2}\right)$.

Algorithm

- Same principle as lines: successive leaves are a temporal antichain
- Starting from the root, resolve conflicts: if two paths intersect, either they start at the same vertex

Temporal rooted trees

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}\left(\ell n^{2}\right)$.

Algorithm

- Same principle as lines: successive leaves are a temporal antichain
- Starting from the root, resolve conflicts: if two paths intersect, either they start at the same vertex

Temporal rooted trees

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}\left(\ell n^{2}\right)$.

Algorithm

- Same principle as lines: successive leaves are a temporal antichain
- Starting from the root, resolve conflicts: if two paths intersect, either they start at the same vertex, or one starts before (in the underlying tree)
 the other

Temporal rooted trees

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}\left(\ell n^{2}\right)$.

Algorithm

- Same principle as lines: successive leaves are a temporal antichain
- Starting from the root, resolve conflicts: if two paths intersect, either they start at the same vertex, or one starts before (in the underlying tree)
 the other

Path Cover of temporal oriented trees (1) Back to static

Theorem [CDFK, 2024+]

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC in time $\mathcal{O}\left(\ell n^{2}+n^{3}\right)$.

Path Cover of temporal oriented trees (1) Back to static

Theorem [CDFK, 2024+]

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC in time $\mathcal{O}\left(\ell n^{2}+n^{3}\right)$.

Algorithm

- Construct an auxiliary connectivity graph: two vertices are adjacent \Leftrightarrow they are temporally connected in the tree

Path Cover of temporal oriented trees (1) Back to static

Theorem [CDFK, 2024+]

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC in time $\mathcal{O}\left(\ell n^{2}+n^{3}\right)$.

Algorithm

- Construct an auxiliary connectivity graph: two vertices are adjacent \Leftrightarrow they are temporally connected in the tree

Lemma

Clique in $G \Leftrightarrow$ Temporal Path in \mathcal{T}.

Path Cover of temporal oriented trees (1) Back to static

Theorem [CDFK, 2024+]

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC in time $\mathcal{O}\left(\ell n^{2}+n^{3}\right)$.

Algorithm

- Construct an auxiliary connectivity graph: two vertices are adjacent \Leftrightarrow they are temporally connected in the tree

Lemma

Clique Cover in $G \Leftrightarrow$ Temporal Path Cover in \mathcal{T}.

Path Cover of temporal oriented trees (2) Holes

Lemma
There are no holes in the connectivity graph.

Path Cover of temporal oriented trees (2) Holes

Lemma

There are no holes in the connectivity graph.

$\circ \quad 0$
o
$\circ \mathcal{T}$
$\circ \quad 0$

Path Cover of temporal oriented trees (2) Holes

Lemma

There are no holes in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T^{\prime}.

Path Cover of temporal oriented trees (2) Holes

Lemma

There are no holes in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T^{\prime}.

Path Cover of temporal oriented trees (2) Holes

Lemma

There are no holes in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T^{\prime}.

Path Cover of temporal oriented trees (2) Holes

Lemma

There are no holes in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T^{\prime}.

Path Cover of temporal oriented trees (2) Holes

Lemma

There are no holes in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T^{\prime}.

Claim

Alternating between in-arcs and out-arcs from and to T^{\prime}.

Path Cover of temporal oriented trees (2) Holes

Lemma

There are no holes in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T^{\prime}.

Claim

Alternating between in-arcs and out-arcs from and to $T^{\prime} . \Rightarrow$ No odd hole

Path Cover of temporal oriented trees (2) Holes

Lemma

There are no holes in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T^{\prime}.

Claim

Alternating between in-arcs and out-arcs from and to $T^{\prime} . \Rightarrow$ No odd hole

Claim

No even hole either (using Helly property and vertex-intersection of temporal paths).

Path Cover of temporal oriented trees (3) Antiholes

Lemma
There are no antiholes in the connectivity graph.

Path Cover of temporal oriented trees (3) Antiholes

Lemma

There are no antiholes in the connectivity graph.

Path Cover of temporal oriented trees (3) Antiholes

Lemma
There are no antiholes in the connectivity graph.

Path Cover of temporal oriented trees (3) Antiholes

Lemma
There are no antiholes in the connectivity graph.

Path Cover of temporal oriented trees (3) Antiholes

Lemma

There are no antiholes in the connectivity graph.

Case 1

Path Cover of temporal oriented trees (3) Antiholes

Lemma

There are no antiholes in the connectivity graph.

Case 1

Path Cover of temporal oriented trees (3) Antiholes

Lemma

There are no antiholes in the connectivity graph.

Case 1

Path Cover of temporal oriented trees (3) Antiholes

Lemma

There are no antiholes in the connectivity graph.

Case 1

Path Cover of temporal oriented trees (3) Antiholes

Lemma

There are no antiholes in the connectivity graph.

Case 1

Path Cover of temporal oriented trees (3) Antiholes

Lemma

There are no antiholes in the connectivity graph.

Case 1

Path Cover of temporal oriented trees (3) Antiholes

Lemma

There are no antiholes in the connectivity graph.

Case 1

\Rightarrow The temporal path of this edge does not exist in \mathcal{T}.

Path Cover of temporal oriented trees (3) Antiholes

Lemma

There are no antiholes in the connectivity graph.

Case 1

\Rightarrow The temporal path of this edge does not exist in \mathcal{T}.

Path Cover of temporal oriented trees (3) Antiholes

Lemma

There are no antiholes in the connectivity graph.

Case 1

\Rightarrow The temporal path of this edge does not exist in \mathcal{T}.

Path Cover of temporal oriented trees (3) Antiholes

Lemma

There are no antiholes in the connectivity graph.

Case 1

\Rightarrow The temporal path of this edge does not exist in \mathcal{T}.

Path Cover of temporal oriented trees (3) Antiholes

Lemma

There are no antiholes in the connectivity graph.

Case 1

\Rightarrow The temporal path of this edge does not exist in \mathcal{T}.

Case 2

\Rightarrow Each has to be complete bipartite in G, only possible if order ≤ 7, which we then manage.

Path Cover of temporal oriented trees (4) Conclusion

 LemmasThe connectivity graph is (hole,antihole)-free

Path Cover of temporal oriented trees (4) Conclusion

 LemmasThe connectivity graph is (hole,antihole)-free \Rightarrow It is weakly chordal (subclass of perfect)

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free \Rightarrow It is weakly chordal (subclass of perfect) \Rightarrow Dilworth property!

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free $\Rightarrow \mathrm{It}$ is weakly chordal (subclass of perfect) \Rightarrow Dilworth property!

Theorem [Hayward, Spinrad \& Sritharan, 2000]

There is a $\mathcal{O}(m n)$ algorithm for Clique Cover in weakly chordal graphs with n vertices and m edges.

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free $\Rightarrow \mathrm{It}$ is weakly chordal (subclass of perfect) \Rightarrow Dilworth property!

Theorem [Hayward, Spinrad \& Sritharan, 2000]

There is a $\mathcal{O}(m n)$ algorithm for Clique Cover in weakly chordal graphs with n vertices and m edges.
\Rightarrow Connectivity graph in $\mathcal{O}\left(n^{2} \ell\right)$, then [HSS00] in $\mathcal{O}\left(n^{2} \times n\right)$.

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free $\Rightarrow \mathrm{It}$ is weakly chordal (subclass of perfect) \Rightarrow Dilworth property!

Theorem [Hayward, Spinrad \& Sritharan, 2000]

There is a $\mathcal{O}(m n)$ algorithm for Clique Cover in weakly chordal graphs with n vertices and m edges.
\Rightarrow Connectivity graph in $\mathcal{O}\left(n^{2} \ell\right)$, then [HSS00] in $\mathcal{O}\left(n^{2} \times n\right)$.

Remark

The connectivity graph is not chordal (it may contain C_{4}).

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free $\Rightarrow \mathrm{It}$ is weakly chordal (subclass of perfect) \Rightarrow Dilworth property!

Theorem [Hayward, Spinrad \& Sritharan, 2000]

There is a $\mathcal{O}(m n)$ algorithm for Clique Cover in weakly chordal graphs with n vertices and m edges.
\Rightarrow Connectivity graph in $\mathcal{O}\left(n^{2} \ell\right)$, then [HSS00] in $\mathcal{O}\left(n^{2} \times n\right)$.

Remark

The connectivity graph is not chordal (it may contain C_{4}).

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free $\Rightarrow \mathrm{It}$ is weakly chordal (subclass of perfect) \Rightarrow Dilworth property!

Theorem [Hayward, Spinrad \& Sritharan, 2000]

There is a $\mathcal{O}(m n)$ algorithm for Clique Cover in weakly chordal graphs with n vertices and m edges.
\Rightarrow Connectivity graph in $\mathcal{O}\left(n^{2} \ell\right)$, then [HSS00] in $\mathcal{O}\left(n^{2} \times n\right)$.

Remark

The connectivity graph is not chordal (it may contain C_{4}).

Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+]
TD-PC is NP-hard on temporal oriented trees.

Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+]
TD-PC is NP-hard on temporal oriented trees.
Reduction from Unary Bin Packing (inspired by [KMZ23]) Items of size $x_{1}, \ldots, x_{n} ; b$ bins of size B

Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+]

TD-PC is NP-hard on temporal oriented trees.
Reduction from Unary Bin Packing (inspired by [KMZ23]) Items of size $x_{1}, \ldots, x_{n} ; b$ bins of size B

Each $\left(s_{i}, t_{i}\right) \equiv$ one bin

Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+]

TD-PC is NP-hard on temporal oriented trees.
Reduction from Unary Bin Packing (inspired by [KMZ23]) Items of size $x_{1}, \ldots, x_{n} ; b$ bins of size B

Each $\left(s_{i}, t_{i}\right) \equiv$ one bin
Each bin must be filled

Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+]

TD-PC is NP-hard on temporal oriented trees.
Reduction from Unary Bin Packing (inspired by [KMZ23]) Items of size $x_{1}, \ldots, x_{n} ; b$ bins of size B

Each $\left(s_{i}, t_{i}\right) \equiv$ one bin
Each bin must be filled
$\left(v_{i}, w_{i}\right) \equiv$ bins unused by item i

Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+]

TD-PC is NP-hard on temporal oriented trees.
Reduction from Unary Bin Packing (inspired by [KMZ23]) Items of size $x_{1}, \ldots, x_{n} ; b$ bins of size B

Each $\left(s_{i}, t_{i}\right) \equiv$ one bin
Each bin must be filled
$\left(v_{i}, w_{i}\right) \equiv$ bins unused by item i

We create temporal layers
for each item i

Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+]

TD-PC is NP-hard on temporal oriented trees.
Reduction from Unary Bin Packing (inspired by [KMZ23]) Items of size $x_{1}, \ldots, x_{n} ; b$ bins of size B

Each $\left(s_{i}, t_{i}\right) \equiv$ one bin
Each bin must be filled
$\left(v_{i}, w_{i}\right) \equiv$ bins unused by item i

We create temporal layers
for each item i
Here, $x_{1}=3$

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+]
Temporal oriented trees do not have the TD-Dilworth property.

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+]
Temporal oriented trees do not have the TD-Dilworth property.

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+]

Temporal oriented trees do not have the TD-Dilworth property.

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+]
Temporal oriented trees do not have the TD-Dilworth property.

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+]

Temporal oriented trees do not have the TD-Dilworth property. Furthermore, the gap between antichain and partition can be arbitrarily large in temporal DAGs.

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+]

Temporal oriented trees do not have the TD-Dilworth property. Furthermore, the gap between antichain and partition can be arbitrarily large in temporal DAGs.

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+]

Temporal oriented trees do not have the TD-Dilworth property. Furthermore, the gap between antichain and partition can be arbitrarily large in temporal DAGs.

What about the Dilworth property in those NP-hard cases?

Theorem [CDFK, 2024+]

Temporal oriented trees do not have the TD-Dilworth property. Furthermore, the gap between antichain and partition can be arbitrarily large in temporal DAGs.

Parameterized complexity: reminder

Definition

For an input of size n with a parameter k and a computable function f :

- FPT algorithm $\Leftrightarrow f(k) n^{\mathcal{O}(1)}$
- XP algorithm $\Leftrightarrow n^{f(k)}$

Parameterized complexity: reminder

Definition

For an input of size n with a parameter k and a computable function f :

- FPT algorithm $\Leftrightarrow f(k) n^{\mathcal{O}(1)}$
- XP algorithm $\Leftrightarrow n^{f(k)}$

Nice tree decomposition of $G(V, E)$ [Kloks, 1994]

A rooted tree T , each node $v \in \mathrm{~T}$ has a bag $X_{v} \subseteq V$, such that:

- for $a \in V,\left\{v: a \in X_{v}\right\}$ is a connected subtree of T
- if $a b \in E$, then $\exists v$ such that $a, b \in X_{v}$
- introduce node $v \Leftrightarrow$ one child v_{1} s.t. $X_{v}=X_{v_{1}} \cup a, a \in X_{v}$
- forget node $v \Leftrightarrow$ one child v_{1} s.t. $X_{v}=X_{v_{1}} \backslash a, a \in X_{v_{1}}$
- join node $v \Leftrightarrow$ two children v_{1}, v_{2} s.t. $X_{v}=X_{v_{1}}=X_{v_{2}}$

Leaf and root bags are empty, $\mathrm{tw}=\max$ size of a bag -1

Parameterized complexity for TD-PC (1) Preliminaries

Theorem [CDFK, 2024+]
TD-PC is FPT w.r.t. tw and $t_{\text {max }}$ (total number of time-steps)

Dynamic programing on a nice tree decomposition

Parameterized complexity for TD-PC (1) Preliminaries

Theorem [CDFK, 2024+]
TD-PC is FPT w.r.t. tw and $t_{\text {max }}$ (total number of time-steps)

Dynamic programing on a nice tree decomposition
Observation
Any arc of \mathcal{D} appears in at most $t_{\text {max }}$ paths of a TD-PC \Rightarrow At most $p=\binom{\mathrm{tw}}{2} \cdot t_{\text {max }}$ temporally disjoint paths contain at least one arc from a given bag

Parameterized complexity for TD-PC (1) Preliminaries

Theorem [CDFK, 2024+]

TD-PC is FPT w.r.t. tw and $t_{\text {max }}$ (total number of time-steps)

Dynamic programing on a nice tree decomposition

Observation

Any arc of \mathcal{D} appears in at most $t_{\text {max }}$ paths of a TD-PC \Rightarrow At most $p=\binom{\mathrm{tw}}{2} \cdot t_{\text {max }}$ temporally disjoint paths contain at least one arc from a given bag
For simplicity, duplicate the arcs such that each has only one time label (so a TD-PC uses arc-disjoint paths)

Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v
\Rightarrow At most
types for any node

Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v

- A partition $Q_{0}, Q_{1}, \ldots, Q_{t}$ of the arcs inside $X_{v}\left(Q_{i}\right.$ for $i \neq 0$ is in a temporal path P_{i} of a TD-PC, Q_{0} is the unused arcs)
\Rightarrow At most p^{p}
types for any node

Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v

- A partition $Q_{0}, Q_{1}, \ldots, Q_{t}$ of the arcs inside $X_{v}\left(Q_{i}\right.$ for $i \neq 0$ is in a temporal path P_{i} of a TD-PC, Q_{0} is the unused arcs)
- For each Q_{i}, the vertices V_{i} of X_{v} that are in P_{i} (endpoints of arcs in Q_{i} and those not incident with arcs in Q_{i})
\Rightarrow At most $p^{p} \times 2^{\mathrm{tw}+1}$
types for any node

Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v

- A partition $Q_{0}, Q_{1}, \ldots, Q_{t}$ of the arcs inside $X_{v}\left(Q_{i}\right.$ for $i \neq 0$ is in a temporal path P_{i} of a TD-PC, Q_{0} is the unused arcs)
- For each Q_{i}, the vertices V_{i} of X_{v} that are in P_{i} (endpoints of arcs in Q_{i} and those not incident with arcs in Q_{i})
- For each V_{i}, their order of occupation by P_{i}
\Rightarrow At most $p^{p} \times 2^{\mathrm{tw}+1} \times(\mathrm{tw}+1)$!
types for any node

Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v

- A partition $Q_{0}, Q_{1}, \ldots, Q_{t}$ of the arcs inside $X_{v}\left(Q_{i}\right.$ for $i \neq 0$ is in a temporal path P_{i} of a TD-PC, Q_{0} is the unused arcs)
- For each Q_{i}, the vertices V_{i} of X_{v} that are in P_{i} (endpoints of arcs in Q_{i} and those not incident with arcs in Q_{i})
- For each V_{i}, their order of occupation by P_{i}
- For each Q_{i}, the vertices in V_{i} with one or two arcs outside of X_{v}, the time labels of those arcs, and whether the neighbour appears below or above v in the decomposition
\Rightarrow At most $p^{p} \times 2^{\mathrm{tw}+1} \times(\mathrm{tw}+1)!\times 2^{\mathrm{tw}+2} \times t_{\text {max }}^{2}$
types for any node

Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v

- A partition $Q_{0}, Q_{1}, \ldots, Q_{t}$ of the arcs inside $X_{v}\left(Q_{i}\right.$ for $i \neq 0$ is in a temporal path P_{i} of a TD-PC, Q_{0} is the unused arcs)
- For each Q_{i}, the vertices V_{i} of X_{v} that are in P_{i} (endpoints of arcs in Q_{i} and those not incident with arcs in Q_{i})
- For each V_{i}, their order of occupation by P_{i}
- For each Q_{i}, the vertices in V_{i} with one or two arcs outside of X_{v}, the time labels of those arcs, and whether the neighbour appears below or above v in the decomposition
\Rightarrow At most $p^{p} \times 2^{\mathrm{tw}+1} \times(\mathrm{tw}+1)!\times 2^{\mathrm{tw}+2} \times t_{\text {max }}^{2} \in 2^{\mathcal{O}(p \log p)}$
types for any node

Parameterized complexity for TD-PC (3) Consistency

Consistency of a type

- The ordered vertices V_{i}, the arcs of Q_{i}, and the information about the arcs going outside of X_{v}, induce temporal paths
- The arcs going outside of X_{v} exist in the digraph and their labels are compatible with the order
- Every vertex of X_{v} is in a V_{i}

Now, we compute from the bottom-up, maintaining consistency.

Parameterized complexity for TD-PC (4) Computation

Dynamic programing using consistent types of partial solutions

- Leaf node: No partial solution since empty

Parameterized complexity for TD-PC (4) Computation

Dynamic programing using consistent types of partial solutions

- Leaf node: No partial solution since empty
- Introduce node: Check compatibility with the child (either a is in a path in the type, or a is added as a single-vertex path)

Parameterized complexity for TD-PC (4) Computation

Dynamic programing using consistent types of partial solutions

- Leaf node: No partial solution since empty
- Introduce node: Check compatibility with the child (either a is in a path in the type, or a is added as a single-vertex path)
- Forget node: Check compatibility with child (the types are the ones obtained by removing the vertex a), discard those where a has an arc going above

Parameterized complexity for TD-PC (4) Computation

Dynamic programing using consistent types of partial solutions

- Leaf node: No partial solution since empty
- Introduce node: Check compatibility with the child (either a is in a path in the type, or a is added as a single-vertex path)
- Forget node: Check compatibility with child (the types are the ones obtained by removing the vertex a), discard those where a has an arc going above
- Join node: Check compatibility of the children (partition of arcs, order of vertices, neighbours outside of the bag, are they above or below in the decomposition, ... \Rightarrow all have to agree), don't count twice the paths that intersect the bag

Parameterized complexity for TD-PC (4) Computation

Dynamic programing using consistent types of partial solutions

- Leaf node: No partial solution since empty
- Introduce node: Check compatibility with the child (either a is in a path in the type, or a is added as a single-vertex path)
- Forget node: Check compatibility with child (the types are the ones obtained by removing the vertex a), discard those where a has an arc going above
- Join node: Check compatibility of the children (partition of arcs, order of vertices, neighbours outside of the bag, are they above or below in the decomposition, ... \Rightarrow all have to agree), don't count twice the paths that intersect the bag
Running time $2^{\mathcal{O}(p \log p)} n$, so FPT w.r.t. $p=f\left(\mathrm{tw}, t_{\text {max }}\right)$

Parameterized complexity for TD-PC (4) Computation

Dynamic programing using consistent types of partial solutions

- Leaf node: No partial solution since empty
- Introduce node: Check compatibility with the child (either a is in a path in the type, or a is added as a single-vertex path)
- Forget node: Check compatibility with child (the types are the ones obtained by removing the vertex a), discard those where a has an arc going above
- Join node: Check compatibility of the children (partition of arcs, order of vertices, neighbours outside of the bag, are they above or below in the decomposition, ... \Rightarrow all have to agree), don't count twice the paths that intersect the bag
Running time $2^{\mathcal{O}(p \log p)} n$, so FPT w.r.t. $p=f\left(\mathrm{tw}, t_{\text {max }}\right)$
And for TPC?
Same principle, but the paths can intersect

Parameterized complexity for TD-PC (4) Computation

Dynamic programing using consistent types of partial solutions

- Leaf node: No partial solution since empty
- Introduce node: Check compatibility with the child (either a is in a path in the type, or a is added as a single-vertex path)
- Forget node: Check compatibility with child (the types are the ones obtained by removing the vertex a), discard those where a has an arc going above
- Join node: Check compatibility of the children (partition of arcs, order of vertices, neighbours outside of the bag, are they above or below in the decomposition, ... \Rightarrow all have to agree), don't count twice the paths that intersect the bag
Running time $2^{\mathcal{O}(p \log p)} n$, so FPT w.r.t. $p=f\left(\mathrm{tw}, t_{\text {max }}\right)$
And for TPC?
Same principle, but the paths can intersect \Rightarrow More information in type: how many times in the solution does Q_{i} appear

Parameterized complexity for TD-PC (4) Computation

Dynamic programing using consistent types of partial solutions

- Leaf node: No partial solution since empty
- Introduce node: Check compatibility with the child (either a is in a path in the type, or a is added as a single-vertex path)
- Forget node: Check compatibility with child (the types are the ones obtained by removing the vertex a), discard those where a has an arc going above
- Join node: Check compatibility of the children (partition of arcs, order of vertices, neighbours outside of the bag, are they above or below in the decomposition, ... \Rightarrow all have to agree), don't count twice the paths that intersect the bag
Running time $2^{\mathcal{O}(p \log p)} n$, so FPT w.r.t. $p=f\left(\mathrm{tw}, t_{\text {max }}\right)$
And for TPC?
Same principle, but the paths can intersect \Rightarrow More information in type: how many times in the solution does Q_{i} appear \Rightarrow Running time $k^{\mathcal{O}(p \log p)} n$ where $k \in \mathcal{O}(n)$ is the solution size $\Rightarrow X P$ w.r.t. p

Conclusion and future work

Temporal class
TPC
TD-PC

Oriented paths	$\mathcal{O}(\ell n)$	$\mathcal{O}(\ell n)$
Rooted trees	$\mathcal{O}\left(\ell n^{2}\right)$	$\mathcal{O}\left(\ell^{2}\right)$
Oriented trees	$\mathcal{O}\left(\ell n^{2}+n^{3}\right)$	NP-hard
DAGs	NP-hard	NP-hard
Digraphs	$\begin{aligned} & \text { XP }\left(\text { tw and } t_{\text {max }}\right) \\ & n^{\mathcal{O}\left(\mathrm{tw}^{2} t_{\text {max }} \log \left(\mathrm{tw} t_{\text {max }}\right)\right)} \end{aligned}$	$\begin{gathered} \text { FPT }\left(\mathrm{tw} \text { and } t_{\max }\right) \\ 2^{\mathcal{O}\left(\mathrm{tw}^{2} t_{\max } \log \left(\mathrm{tw} t_{\max }\right)\right)_{n}} \end{gathered}$

Conclusion and future work

Temporal class
Oriented paths
Rooted trees
Oriented trees
DAGs
$\mathcal{O}\left(\ell^{2}+n^{3}\right)$
NP-hard
XP (tw and $t_{\text {max }}$) FPT (tw and $t_{\text {max }}$) $n^{\mathcal{O}\left(\mathrm{tw}^{2} t_{\max } \log \left(\text { tw } t_{\max }\right)\right)} \quad 2^{\mathcal{O}\left(\mathrm{tw}^{2} t_{\max } \log \left(\mathrm{tw} t_{\max }\right)\right)} n$

Perspectives

- Better FPT, FPT for TPC?
- Approximation? Enumeration?
- Classes of oriented trees where TD-PC is polynomial?
- Other temporal problems that can be reduced to a static problem?

Conclusion and future work

Temporal class
Oriented paths
Rooted trees
Oriented trees
DAGs NP-hard NP-hard

	XP (tw and $t_{\text {max }}$)	FPT (tw and $t_{\text {max }}$)
Digraphs	$\left.n^{\mathcal{O}\left(\mathrm{w}^{2} t_{\text {max }} \log \left(\mathrm{tw} t_{\text {max }}\right)\right.}\right)$	$2^{\mathcal{O}\left(\mathrm{tw}^{2} t_{\text {max }} \log \left(\mathrm{tw} t_{\text {max }}\right)\right)}$

Perspectives

- Better FPT, FPT for TPC?
- Approximation? Enumeration?
- Classes of oriented trees where TD-PC is polynomial?
- Other temporal problems that can be reduced to a static problem?

