Path Covers of Temporal Graphs: When is Dilworth dynamic?

Dibyayan Chakraborty¹, Antoine Dailly², Florent Foucaud², Ralf Klasing³

LIFO Seminar - February 26th 2024

¹ School of Computing, University of Leeds ² LIMOS, Clermont-Ferrand ³ LaBRI. Bordeaux

ANR GRALMECO and TEMPOGRAL

Theorem [Dilworth, 1950]

The minimum size of a chain partition of a finite poset is equal to the maximum size of an antichain of this poset.

Theorem [Dilworth, 1950]

The minimum size of a path partition of a transitive DAG is equal to the maximum size of an antichain of this DAG.

Restated for graphs...

Theorem [Dilworth, 1950]

The minimum size of a path cover of a DAG is equal to the maximum size of an antichain of this DAG.

Restated for graphs... ... and covers.

Theorem [Dilworth, 1950]

The minimum size of a path cover of a DAG is equal to the maximum size of an antichain of this DAG.

Restated for graphs... ... and covers.

Algorithms:

 Algorithmic proof (polynomial time) [Fulkerson, 1956]

Theorem [Dilworth, 1950]

The minimum size of a path cover of a DAG is equal to the maximum size of an antichain of this DAG.

Restated for graphs... ... and covers.

Algorithms:

- Algorithmic proof (polynomial time) [Fulkerson, 1956]
- Many improvements since then, now quasi-linear [Caceres, ICALP 2023]

Theorem [Dilworth, 1950]

The minimum size of a path cover of a DAG is equal to the maximum size of an antichain of this DAG.

Restated for graphs... ... and covers.

Algorithms:

- Algorithmic proof (polynomial time) [Fulkerson, 1956]
- Many improvements since then, now quasi-linear [Caceres, ICALP 2023]
- ► NP-hard on general graphs

Introduction: temporal (di)graphs

Introduction: temporal (di)graphs

Introduction: temporal (di)graphs

Many results and applications in distributed algorithms, dynamic networks (transportation, social, biological...). More recently, gain of interest from the graph algorithms community.

► A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).

- ► A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- ► (Directed) temporal path : strictly increasing time labels.

- ► A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path : strictly increasing time labels.
- ► A temporal path occupies a vertex during interval [t₁, t₂] if it reaches it at time t₁ and leaves it at time t₂.

- ► A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path : strictly increasing time labels.
- ► A temporal path occupies a vertex during interval [t₁, t₂] if it reaches it at time t₁ and leaves it at time t₂.
- Two temporal paths intersect if they occupy the same vertex during non-disjoint intervals.

- ► A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path : strictly increasing time labels.
- ► A temporal path occupies a vertex during interval [t₁, t₂] if it reaches it at time t₁ and leaves it at time t₂.
- Two temporal paths intersect if they occupy the same vertex during non-disjoint intervals. They are temporally disjoint if they do not intersect.

- ► A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path : strictly increasing time labels.
- ► A temporal path occupies a vertex during interval [t₁, t₂] if it reaches it at time t₁ and leaves it at time t₂.
- Two temporal paths intersect if they occupy the same vertex during non-disjoint intervals. They are temporally disjoint if they do not intersect.
- Two vertices are temporally connected if there is a temporal path between them.

- ► A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path : strictly increasing time labels.
- ► A temporal path occupies a vertex during interval [t₁, t₂] if it reaches it at time t₁ and leaves it at time t₂.
- Two temporal paths intersect if they occupy the same vertex during non-disjoint intervals. They are temporally disjoint if they do not intersect.
- Two vertices are temporally connected if there is a temporal path between them.
- A temporal antichain is a set of vertices who are pairwise not temporally connected.

Our incentive for temporally disjoint paths

History

- Several papers on paths and journeys in temporal graphs
- Temporally disjoint paths are a good model for dynamic MULTI AGENT PATH FINDING [Stern et al., 2019]

Our incentive for temporally disjoint paths

History

- Several papers on paths and journeys in temporal graphs
- Temporally disjoint paths are a good model for dynamic MULTI AGENT PATH FINDING [Stern et al., 2019]

- TEMPORALLY DISJOINT WALKS: W[1]-hard and XP (number of walks) [Klobas et al., IJCAI 2021]
- TEMPORALLY DISJOINT PATHS: NP-hard and W[1]-hard (number of vertices) on temporal stars [Kunz, Molter & Zehavi, IJCAI 2023]

Dilworth property

In a (transitive) DAG, the minimum size of a path partition/cover is equal to the maximum size of a antichain.

Temporal Dilworth property

In a temporal DAG, the minimum size of a temporal path partition/cover is equal to the maximum size of a temporal antichain.

Temporal Dilworth property

In a temporal DAG, the minimum size of a temporal path partition/cover is equal to the maximum size of a temporal antichain.

Two problems:

Temporal Path Cover (TPC) Temporal Path Partition/Temporally Disjoint Path Cover (TD-PC)

Temporal Dilworth property

In a temporal DAG, the minimum size of a temporal path partition/cover is equal to the maximum size of a temporal antichain.

Two problems:

Temporal Path Cover (TPC) Temporal Path Partition/Temporally Disjoint Path Cover (TD-PC)

Two questions:

Which temporal DAGs have the Dilworth property?

 \Rightarrow Combinatorial aspect

What is the complexity of those problems?

⇒ Algorithmic aspect

Our results

Temporal class	ТРС	TD-PC
Oriented paths	$\mathcal{O}(\ell n)$	$\mathcal{O}(\ell n)$
Rooted trees	$\mathcal{O}(\ell n^2)$	$\mathcal{O}(\ell n^2)$
Oriented trees	$\mathcal{O}(\ell n^2 + n^3)$	NP-hard
DAGs*	NP-hard	NP-hard
Digraphs		$\begin{array}{c} FPT (tw \text{ and } t_{max}) \\ 2^{\mathcal{O}(tw^2 t_{max} \log(tw t_{max}))} n \end{array}$

 * planar, subcubic, bipartite, girth 10, $\ell=1, t_{\mathsf{max}}=2$

n = number of vertices $\ell =$ number of (unsorted) time labels per arc $t_{max} =$ total number of time-steps

For those specific classes, polynomial-time \Leftrightarrow Dilworth property.

Theorem [CDFK, 2024+]

Temporal oriented lines have the Dilworth property, and we can solve TPC and TD-PC in time $O(\ell n)$.

Algorithm

Theorem [CDFK, 2024+]

Temporal oriented lines have the Dilworth property, and we can solve TPC and TD-PC in time $O(\ell n)$.

Algorithm

Theorem [CDFK, 2024+]

Temporal oriented lines have the Dilworth property, and we can solve TPC and TD-PC in time $O(\ell n)$.

Algorithm

Theorem [CDFK, 2024+]

Temporal oriented lines have the Dilworth property, and we can solve TPC and TD-PC in time $O(\ell n)$.

Algorithm

Theorem [CDFK, 2024+]

Temporal oriented lines have the Dilworth property, and we can solve TPC and TD-PC in time $O(\ell n)$.

Algorithm

Take a maximum-length temporal path containing a leaf.

0 - - - -

Iterate. The successive leaves are a temporal antichain!

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $O(\ell n^2)$.

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}(\ell n^2)$.

Algorithm

► Same principle as lines

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $\mathcal{O}(\ell n^2)$.

Algorithm

► Same principle as lines

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $O(\ell n^2)$.

Algorithm

Same principle as lines: successive leaves are a temporal antichain

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $O(\ell n^2)$.

Algorithm

- Same principle as lines: successive leaves are a temporal antichain
- Starting from the root, resolve conflicts: if two paths intersect, either they start at the same vertex

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $O(\ell n^2)$.

Algorithm

- Same principle as lines: successive leaves are a temporal antichain
- Starting from the root, resolve conflicts: if two paths intersect, either they start at the same vertex

Temporal rooted trees

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $O(\ell n^2)$.

Algorithm

- Same principle as lines: successive leaves are a temporal antichain
- Starting from the root, resolve conflicts: if two paths intersect, either they start at the same vertex, or one starts before (in the underlying tree) the other

Temporal rooted trees

Theorem [CDFK, 2024+]

Temporal rooted trees have the Dilworth property, and we can solve TPC and TD-PC in time $O(\ell n^2)$.

Algorithm

- Same principle as lines: successive leaves are a temporal antichain
- Starting from the root, resolve conflicts: if two paths intersect, either they start at the same vertex, or one starts before (in the underlying tree) the other

Theorem [CDFK, 2024+]

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC in time $O(\ell n^2 + n^3)$.

Theorem [CDFK, 2024+]

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC in time $O(\ell n^2 + n^3)$.

Algorithm

► Construct an auxiliary connectivity graph: two vertices are adjacent ⇔ they are temporally connected in the tree

Theorem [CDFK, 2024+]

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC in time $O(\ell n^2 + n^3)$.

Algorithm

► Construct an auxiliary connectivity graph: two vertices are adjacent ⇔ they are temporally connected in the tree

Lemma

Clique in $G \Leftrightarrow$ Temporal Path in \mathcal{T} .

Theorem [CDFK, 2024+]

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC in time $O(\ell n^2 + n^3)$.

Algorithm

► Construct an auxiliary connectivity graph: two vertices are adjacent ⇔ they are temporally connected in the tree

(Lemma

There are no holes in the connectivity graph.

(Lemma

There are no holes in the connectivity graph.

(Lemma

There are no holes in the connectivity graph.

Claim

(Lemma

There are no holes in the connectivity graph.

Claim

(Lemma

There are no holes in the connectivity graph.

Claim

(Lemma

There are no holes in the connectivity graph.

Claim

(Lemma

There are no holes in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T'.

Claim

Alternating between in-arcs and out-arcs from and to T'.

(Lemma

There are no holes in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T'.

Claim

Alternating between in-arcs and out-arcs from and to T'. \Rightarrow No odd hole

(Lemma

There are no holes in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T'.

Claim

Alternating between in-arcs and out-arcs from and to T'. \Rightarrow No odd hole

Claim

No even hole either (using Helly property and vertex-intersection of temporal paths).

Lemma

There are no antiholes in the connectivity graph.

edge does not exist in \mathcal{T} .

Lemmas

The connectivity graph is (hole,antihole)-free

Lemmas

The connectivity graph is (hole,antihole)-free \Rightarrow It is **weakly** chordal (subclass of perfect)

Lemmas

The connectivity graph is (hole,antihole)-free \Rightarrow It is weakly chordal (subclass of perfect) \Rightarrow Dilworth property!

Lemmas

The connectivity graph is (hole,antihole)-free \Rightarrow It is weakly chordal (subclass of perfect) \Rightarrow Dilworth property!

Theorem [Hayward, Spinrad & Sritharan, 2000]

There is a $\mathcal{O}(mn)$ algorithm for Clique Cover in weakly chordal graphs with *n* vertices and *m* edges.

Lemmas

The connectivity graph is (hole,antihole)-free \Rightarrow It is weakly chordal (subclass of perfect) \Rightarrow Dilworth property!

Theorem [Hayward, Spinrad & Sritharan, 2000]

There is a $\mathcal{O}(mn)$ algorithm for Clique Cover in weakly chordal graphs with *n* vertices and *m* edges.

 \Rightarrow Connectivity graph in $\mathcal{O}(n^2\ell)$, then [HSS00] in $\mathcal{O}(n^2 \times n)$.

Lemmas

The connectivity graph is (hole,antihole)-free \Rightarrow It is weakly chordal (subclass of perfect) \Rightarrow Dilworth property!

Theorem [Hayward, Spinrad & Sritharan, 2000]

There is a $\mathcal{O}(mn)$ algorithm for Clique Cover in weakly chordal graphs with *n* vertices and *m* edges.

 \Rightarrow Connectivity graph in $\mathcal{O}(n^2\ell)$, then [HSS00] in $\mathcal{O}(n^2 \times n)$.

Remark

The connectivity graph is not chordal (it may contain C_4).
Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free \Rightarrow It is weakly chordal (subclass of perfect) \Rightarrow Dilworth property!

Theorem [Hayward, Spinrad & Sritharan, 2000]

There is a $\mathcal{O}(mn)$ algorithm for Clique Cover in weakly chordal graphs with *n* vertices and *m* edges.

 \Rightarrow Connectivity graph in $\mathcal{O}(n^2\ell)$, then [HSS00] in $\mathcal{O}(n^2 \times n)$.

Remark

The connectivity graph is not chordal (it may contain C_4).

Path Cover of temporal oriented trees (4) Conclusion

Lemmas

The connectivity graph is (hole,antihole)-free \Rightarrow It is weakly chordal (subclass of perfect) \Rightarrow Dilworth property!

Theorem [Hayward, Spinrad & Sritharan, 2000]

There is a $\mathcal{O}(mn)$ algorithm for Clique Cover in weakly chordal graphs with *n* vertices and *m* edges.

 \Rightarrow Connectivity graph in $\mathcal{O}(n^2\ell)$, then [HSS00] in $\mathcal{O}(n^2 \times n)$.

Remark

The connectivity graph is not chordal (it may contain C_4).

Theorem [CDFK, 2024+]

TD-PC is NP-hard on temporal oriented trees.

Theorem [CDFK, 2024+]

TD-PC is NP-hard on temporal oriented trees.

Reduction from UNARY BIN PACKING (inspired by [KMZ23]) Items of size x_1, \ldots, x_n ; b bins of size B

TD-PC is NP-hard on temporal oriented trees.

Reduction from UNARY BIN PACKING (inspired by [KMZ23]) Items of size x_1, \ldots, x_n ; b bins of size B

Each $(s_i, t_i) \equiv$ one bin

TD-PC is NP-hard on temporal oriented trees.

Reduction from UNARY BIN PACKING (inspired by [KMZ23]) Items of size x_1, \ldots, x_n ; b bins of size B

Each $(s_i, t_i) \equiv$ one bin

Each bin must be filled

Theorem [CDFK, 2024+]

TD-PC is NP-hard on temporal oriented trees.

Reduction from UNARY BIN PACKING (inspired by [KMZ23]) Items of size x_1, \ldots, x_n ; b bins of size B

Each $(s_i, t_i) \equiv$ one bin Each bin must be filled $(v_i, w_i) \equiv$ bins unused by item *i*

TD-PC is NP-hard on temporal oriented trees.

Reduction from UNARY BIN PACKING (inspired by [KMZ23]) Items of size x_1, \ldots, x_n ; b bins of size B

Each $(s_i, t_i) \equiv$ one bin

Each bin must be filled

 $(v_i, w_i) \equiv \text{bins un-}$ used by item *i*

We create temporal layers

for each item i

TD-PC is NP-hard on temporal oriented trees.

Reduction from UNARY BIN PACKING (inspired by [KMZ23]) Items of size x_1, \ldots, x_n ; b bins of size B

Theorem [CDFK, 2024+]

Temporal oriented trees do not have the TD-Dilworth property.

Theorem [CDFK, 2024+]

Temporal oriented trees do not have the TD-Dilworth property.

Theorem [CDFK, 2024+]

Theorem [CDFK, 2024+]

Theorem [CDFK, 2024+]

Theorem [CDFK, 2024+]

Parameterized complexity: reminder

Definition

For an input of size n with a parameter k and a computable function f:

- FPT algorithm $\Leftrightarrow f(k)n^{\mathcal{O}(1)}$
- XP algorithm $\Leftrightarrow n^{f(k)}$

Parameterized complexity: reminder

Definition

For an input of size n with a parameter k and a computable function f:

• FPT algorithm
$$\Leftrightarrow f(k)n^{\mathcal{O}(1)}$$

• XP algorithm
$$\Leftrightarrow n^{f(k)}$$

Nice tree decomposition of G(V, E) [Kloks, 1994]

A rooted tree T, each node $v \in T$ has a bag $X_v \subseteq V$, such that:

- ▶ for $a \in V$, $\{v : a \in X_v\}$ is a connected subtree of T
- ▶ if $ab \in E$, then $\exists v$ such that $a, b \in X_v$
- ▶ *introduce* node $v \Leftrightarrow$ one child v_1 s.t. $X_v = X_{v_1} \cup a$, $a \in X_v$
- ▶ forget node $v \Leftrightarrow$ one child v_1 s.t. $X_v = X_{v_1} \setminus a$, $a \in X_{v_1}$

► *join* node $v \Leftrightarrow$ two children v_1, v_2 s.t. $X_v = X_{v_1} = X_{v_2}$

Leaf and root bags are empty, tw = max size of a bag -1

Parameterized complexity for TD-PC (1) Preliminaries

Theorem [CDFK, 2024+]

TD-PC is FPT w.r.t. tw and t_{max} (total number of time-steps)

Dynamic programing on a nice tree decomposition

Parameterized complexity for TD-PC (1) Preliminaries

Theorem [CDFK, 2024+]

TD-PC is FPT w.r.t. tw and t_{max} (total number of time-steps)

Dynamic programing on a nice tree decomposition

Observation

Any arc of \mathcal{D} appears in at most t_{\max} paths of a TD-PC \Rightarrow At most $p = \binom{tw}{2} \cdot t_{\max}$ temporally disjoint paths contain at least one arc from a given bag

Parameterized complexity for TD-PC (1) Preliminaries

Theorem [CDFK, 2024+]

TD-PC is FPT w.r.t. tw and t_{max} (total number of time-steps)

Dynamic programing on a nice tree decomposition

Observation

Any arc of \mathcal{D} appears in at most t_{\max} paths of a TD-PC \Rightarrow At most $p = \binom{tw}{2} \cdot t_{\max}$ temporally disjoint paths contain at least one arc from a given bag

For simplicity, duplicate the arcs such that each has only one time label (so a TD-PC uses arc-disjoint paths)

Type: necessary information at each node v

 \Rightarrow At most types for any node

Type: necessary information at each node v

A partition Q₀, Q₁,..., Q_t of the arcs inside X_v (Q_i for i ≠ 0 is in a temporal path P_i of a TD-PC, Q₀ is the unused arcs)

 $\Rightarrow At most p^p$ types for any node

Type: necessary information at each node v

- A partition Q₀, Q₁,..., Q_t of the arcs inside X_v (Q_i for i ≠ 0 is in a temporal path P_i of a TD-PC, Q₀ is the unused arcs)
- ► For each Q_i, the vertices V_i of X_v that are in P_i (endpoints of arcs in Q_i and those not incident with arcs in Q_i)

 $\Rightarrow \text{At most } p^{p} \times 2^{\mathsf{tw}+1}$ types for any node

Type: necessary information at each node v

- A partition Q₀, Q₁,..., Q_t of the arcs inside X_v (Q_i for i ≠ 0 is in a temporal path P_i of a TD-PC, Q₀ is the unused arcs)
- ► For each Q_i, the vertices V_i of X_v that are in P_i (endpoints of arcs in Q_i and those not incident with arcs in Q_i)
- For each V_i , their order of occupation by P_i

$$\Rightarrow At most p^{p} \times 2^{tw+1} \times (tw+1)!$$

types for any node

Type: necessary information at each node v

- A partition Q₀, Q₁,..., Q_t of the arcs inside X_v (Q_i for i ≠ 0 is in a temporal path P_i of a TD-PC, Q₀ is the unused arcs)
- ► For each Q_i, the vertices V_i of X_v that are in P_i (endpoints of arcs in Q_i and those not incident with arcs in Q_i)
- For each V_i , their order of occupation by P_i
- ► For each Q_i, the vertices in V_i with one or two arcs outside of X_v, the time labels of those arcs, and whether the neighbour appears below or above v in the decomposition

 $\Rightarrow \text{At most } p^p \times 2^{\mathsf{tw}+1} \times (\mathsf{tw}+1)! \times 2^{\mathsf{tw}+2} \times t^2_{\mathsf{max}}$ types for any node

Type: necessary information at each node v

- A partition Q₀, Q₁,..., Q_t of the arcs inside X_v (Q_i for i ≠ 0 is in a temporal path P_i of a TD-PC, Q₀ is the unused arcs)
- ► For each Q_i, the vertices V_i of X_v that are in P_i (endpoints of arcs in Q_i and those not incident with arcs in Q_i)
- For each V_i , their order of occupation by P_i
- ► For each Q_i, the vertices in V_i with one or two arcs outside of X_v, the time labels of those arcs, and whether the neighbour appears below or above v in the decomposition

 $\Rightarrow \text{At most } p^p \times 2^{\mathsf{tw}+1} \times (\mathsf{tw}+1)! \times 2^{\mathsf{tw}+2} \times t^2_{\mathsf{max}} \in 2^{\mathcal{O}(p \log p)}$ types for any node

Parameterized complexity for TD-PC (3) Consistency

Consistency of a type

- ► The ordered vertices V_i, the arcs of Q_i, and the information about the arcs going outside of X_v, induce temporal paths
- ► The arcs going outside of X_v exist in the digraph and their labels are compatible with the order

• Every vertex of
$$X_v$$
 is in a V_i

Now, we compute from the bottom-up, maintaining consistency.

Dynamic programing using consistent types of partial solutions

► Leaf node: No partial solution since empty

Dynamic programing using consistent types of partial solutions

- Leaf node: No partial solution since empty
- Introduce node: Check compatibility with the child (either a is in a path in the type, or a is added as a single-vertex path)

Dynamic programing using consistent types of partial solutions

- ► Leaf node: No partial solution since empty
- Introduce node: Check compatibility with the child (either a is in a path in the type, or a is added as a single-vertex path)
- Forget node: Check compatibility with child (the types are the ones obtained by removing the vertex *a*), discard those where *a* has an arc going above

Dynamic programing using consistent types of partial solutions

- ► Leaf node: No partial solution since empty
- Introduce node: Check compatibility with the child (either a is in a path in the type, or a is added as a single-vertex path)
- Forget node: Check compatibility with child (the types are the ones obtained by removing the vertex *a*), discard those where *a* has an arc going above
- ▶ Join node: Check compatibility of the children (partition of arcs, order of vertices, neighbours outside of the bag, are they above or below in the decomposition, ... ⇒ all have to agree), don't count twice the paths that intersect the bag

Dynamic programing using consistent types of partial solutions

- ► Leaf node: No partial solution since empty
- Introduce node: Check compatibility with the child (either a is in a path in the type, or a is added as a single-vertex path)
- Forget node: Check compatibility with child (the types are the ones obtained by removing the vertex *a*), discard those where *a* has an arc going above
- ▶ Join node: Check compatibility of the children (partition of arcs, order of vertices, neighbours outside of the bag, are they above or below in the decomposition, ... ⇒ all have to agree), don't count twice the paths that intersect the bag

Running time $2^{\mathcal{O}(p \log p)} n$, so FPT w.r.t. $p = f(tw, t_{max})$

Dynamic programing using consistent types of partial solutions

- ► Leaf node: No partial solution since empty
- Introduce node: Check compatibility with the child (either a is in a path in the type, or a is added as a single-vertex path)
- Forget node: Check compatibility with child (the types are the ones obtained by removing the vertex *a*), discard those where *a* has an arc going above
- ▶ Join node: Check compatibility of the children (partition of arcs, order of vertices, neighbours outside of the bag, are they above or below in the decomposition, ... ⇒ all have to agree), don't count twice the paths that intersect the bag

Running time $2^{\mathcal{O}(p \log p)} n$, so FPT w.r.t. $p = f(tw, t_{max})$ And for TPC?

Same principle, but the paths can intersect

Dynamic programing using consistent types of partial solutions

- ► Leaf node: No partial solution since empty
- Introduce node: Check compatibility with the child (either a is in a path in the type, or a is added as a single-vertex path)
- Forget node: Check compatibility with child (the types are the ones obtained by removing the vertex *a*), discard those where *a* has an arc going above
- ▶ Join node: Check compatibility of the children (partition of arcs, order of vertices, neighbours outside of the bag, are they above or below in the decomposition, ... ⇒ all have to agree), don't count twice the paths that intersect the bag

Running time $2^{\mathcal{O}(p \log p)}n$, so FPT w.r.t. $p = f(\mathsf{tw}, t_{\mathsf{max}})$

And for TPC?

Same principle, but the paths can intersect \Rightarrow More information in type: how many times in the solution does Q_i appear
Parameterized complexity for TD-PC (4) Computation

Dynamic programing using consistent types of partial solutions

- ► Leaf node: No partial solution since empty
- Introduce node: Check compatibility with the child (either a is in a path in the type, or a is added as a single-vertex path)
- Forget node: Check compatibility with child (the types are the ones obtained by removing the vertex *a*), discard those where *a* has an arc going above
- ▶ Join node: Check compatibility of the children (partition of arcs, order of vertices, neighbours outside of the bag, are they above or below in the decomposition, ... ⇒ all have to agree), don't count twice the paths that intersect the bag

Running time $2^{\mathcal{O}(p \log p)} n$, so FPT w.r.t. $p = f(tw, t_{max})$ And for TPC?

Same principle, but the paths can intersect \Rightarrow More information in type: how many times in the solution does Q_i appear \Rightarrow Running time $k^{\mathcal{O}(p \log p)}n$ where $k \in \mathcal{O}(n)$ is the solution size \Rightarrow XP w.r.t. $p_{20/21}$

Conclusion and future work

Temporal class	ТРС	TD-PC
Oriented paths	$\mathcal{O}(\ell n)$	$\mathcal{O}(\ell n)$
Rooted trees	$O(\ell n^2)$	$\mathcal{O}(\ell n^2)$
Oriented trees	$\mathcal{O}(\ell n^2 + n^3)$	NP-hard
DAGs	NP-hard	NP-hard
Digraphs		$\begin{array}{c} FPT (tw \text{ and } t_{max}) \\ 2^{\mathcal{O}(tw^2 t_{max} \log(tw t_{max}))} n \end{array}$

Conclusion and future work

Temporal class	ТРС	TD-PC
Oriented paths	$\mathcal{O}(\ell n)$	$\mathcal{O}(\ell n)$
Rooted trees	$\mathcal{O}(\ell n^2)$	$\mathcal{O}(\ell n^2)$
Oriented trees	$\mathcal{O}(\ell n^2 + n^3)$	NP-hard
DAGs	NP-hard	NP-hard
Digraphs		$\begin{array}{c} FPT (tw \text{ and } t_{max}) \\ 2^{\mathcal{O}(tw^2 t_{max} \log(tw t_{max}))} n \end{array}$

Perspectives

- ▶ Better FPT, FPT for TPC?
- ► Approximation? Enumeration?
- Classes of oriented trees where TD-PC is polynomial?
- Other temporal problems that can be reduced to a static problem?

Conclusion and future work

Temporal class	ТРС	TD-PC
Oriented paths	$\mathcal{O}(\ell n)$	$\mathcal{O}(\ell n)$
Rooted trees	$\mathcal{O}(\ell n^2)$	$O(\ell n^2)$
Oriented trees	$\mathcal{O}(\ell n^2 + n^3)$	NP-hard
DAGs	NP-hard	NP-hard
Digraphs		$\begin{array}{c} FPT (tw \text{ and } t_{max}) \\ 2^{\mathcal{O}(tw^2 t_{max} \log(tw t_{max}))} n \end{array}$

Perspectives

- ► Better FPT, FPT for TPC?
- ► Approximation? Enumeration?
- Classes of oriented trees where TD-PC is polynomial?
- Other temporal problems that can be reduced to a static problem?

