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Introduction: Dilworth's theorem

Theorem [Dilworth, 1950]]

The minimum size of a path cover of a DAG

is equal to the maximum size of an antichain
of this DAG.

Restated for graphs...
.. and covers.

Algorithms:

» Algorithmic proof (polynomial time)
[Fulkerson, 1956]

» Many improvements since then, now
quasi-linear [Caceres, ICALP 2023]

» NP-hard on general graphs
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D =(V,A1, A, ..., Ax) [Ferreira & Viennot, 2002]
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Introduction: temporal (di)graphs
D =(V,A1, A, ..., Ax) [Ferreira & Viennot, 2002]

s //D

/::\O\NOOZOOOI

t=3 t=4

D = (V,A,\) [Kempe, Kleinberg & Kumar, 2000]

Many results and applications in distributed algorithms, dynamic
networks (transportation, social, biological...). More recently, gain
of interest from the graph algorithms community.
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A few definitions for this talk

>

A temporal DAG (resp. tree...) is a temporal (di)graph whose
underlying (di)graph is a DAG (resp. tree...).

(Directed) temporal path : strictly increasing time labels.

A temporal path occupies a vertex during interval [t1, tp] if it
reaches it at time t; and leaves it at time t».

Two temporal paths intersect if they occupy the same vertex
during non-disjoint intervals. They are temporally disjoint if
they do not intersect.

Two vertices are temporally connected if there is a temporal
path between them.

A temporal antichain is a set of vertices who are pairwise not

temporally connected.
3
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Our incentive for temporally disjoint paths
History

» Several papers on paths and journeys in temporal graphs

» Temporally disjoint paths are a good model for dynamic
MuLTl AGENT PATH FINDING [Stern et al., 2019]
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Our incentive for temporally disjoint paths

History

>
|

Several papers on paths and journeys in temporal graphs

Temporally disjoint paths are a good model for dynamic
MuLTl AGENT PATH FINDING [Stern et al., 2019]

TEMPORALLY DI1SJOINT WALKS: W([1]-hard and XP
(number of walks) [Klobas et al., [JCAI 2021]
TEMPORALLY DISJOINT PATHS: NP-hard and W([1]-hard
(number of vertices) on temporal stars [Kunz, Molter &
Zehavi, 1JCAI 2023]
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A temporal Dilworth's theorem?

Dilworth property]

In a (transitive) DAG, the minimum size of a
path partition/cover is equal to the maximum
size of a antichain.
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A temporal Dilworth's theorem?

Temporal Dilworth property]

In a temporal DAG, the minimum size of a
temporal path partition/cover is equal to the
maximum size of a temporal antichain.

Two problems:

Temporal Path Temporal Path Partition/Temporally
Cover (TPQ) Disjoint Path Cover (TD-PC)

Two questions:

Which temporal DAGs have What is the complexity
the Dilworth property? of those problems?

= Combinatorial aspect = Algorithmic aspect
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Our results

Temporal class TPC TD-PC
Oriented paths O(¢n) O(¢n)
Rooted trees O(n?) O(en?)
Oriented trees O(¢n? 4 n3) NP-hard

DAGs* NP-hard NP-hard

XP (tw and tmax) FPT (tw and tmax)

nO(tw2 tmax [0g(tW tmax)) 2(9(tw2 tmax [0g(tW tmax)) n

Digraphs

* planar, subcubic, bipartite, girth 10, £ = 1, tmax = 2

n = number of vertices
¢ = number of (unsorted) time labels per arc
tmax = total number of time-steps

For those specific classes, polynomial-time < Dilworth property.
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Temporal lines

Theorem [CDFK, 2024—&—]]

Temporal oriented lines have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n).

Algorithm

Take a maximum-length temporal path containing a leaf.
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Temporal lines

Theorem [CDFK, 2024—&—]]

Temporal oriented lines have the Dilworth property, and we can
solve TPC and TD-PC in time O(¢n).

Algorithm

Take a maximum-length temporal path containing a leaf.

O,,,,

Iterate. The successive leaves are a temporal antichain!
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Temporal rooted trees
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Path Cover of temporal oriented trees (1) Back to static

Theorem [CDFK, 2024—&—]]

Temporal oriented trees have the Dilworth property for TPC, and
we can solve TPC in time O(¢n? + n3).
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Theorem [CDFK, 2024—&—]]

Temporal oriented trees have the Dilworth property for TPC, and
we can solve TPC in time O(¢n? + n3).

Algorithm

» Construct an auxiliary connectivity graph: two vertices are
adjacent < they are temporally connected in the tree

7= —
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Path Cover of temporal oriented trees (1) Back to static

Theorem [CDFK, 2024—&—]]

Temporal oriented trees have the Dilworth property for TPC, and
we can solve TPC in time O(¢n? + n3).

Algorithm

» Construct an auxiliary connectivity graph: two vertices are
adjacent < they are temporally connected in the tree

7= —

Il
(o)}

Clique Cover in G < Temporal Path Cover in T.
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Path Cover of temporal oriented trees (2) Holes

There are no holes in the connectivity graph. ]
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Path Cover of temporal oriented trees (2) Holes

There are no holes in the connectivity graph. ]

Claim §

The vertices of the hole are leaves of a con-
nected subtree T'.

o

Claim

Alternating between in-arcs and out-arcs from
and to T’. = No odd hole

Claim . T

No even hole either (using Helly property and
vertex-intersection of temporal paths).

. J
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Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.

AT
G o % T
% o—o—o—0—0
Case 2
Case 1
A )
| @0~ °

= The temporal path of this
edge does not exist in T.
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Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph. ]

= Each has to be complete bi-
= The temporal path of this partite in G

edge does not exist in 7.
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Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph. ]

) = Each has to be complete bi-

= The temporal path of this partite in G, only possible if or-

edge does not exist in 7. der < 7, which we then manage.
12/21
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Lemmas

The connectivity graph is (hole,antihole)-free
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Theorem [CDFK, 2024+])

TD-PC is NP-hard on temporal oriented trees. ]

Reduction from UNARY BIN PACKING (inspired by [KMZ23])

Items of size xq,...,X, ; b bins of size B

0 e o e D

Each (sj, tj) = one bin
Each bin must be filled

(vi, w;) = bins un-
used by item i

!

FOEaER
up'st ) 5's10000 14'5{ 0000 ba verl?&es b vell'gg

14/21



Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+])

TD-PC is NP-hard on temporal oriented trees. ]

Reduction from UNARY BIN PACKING (inspired by [KMZ23])

Items of size xq,...,X, ; b bins of size B

Each (sj, tj) = one bin
Each bin must be filled

(vi, w;) = bins un-
used by item i

We create temporal layers
for each item i

14/21



Path Partition of temporal oriented trees: NP-hardness

Theorem [CDFK, 2024+])

TD-PC is NP-hard on temporal oriented trees. ]

Reduction from UNARY BIN PACKING (inspired by [KMZ23])

Items of size xq,...,X, ; b bins of size B

Each (sj, tj) = one bin
Each bin must be filled
(vi, w;) = bins un-
used by item i
We create temporal layers
for each item i
. W,‘,"s Here, X1 = 3
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Parameterized complexity: reminder

Definition

For an input of size n with a parameter k and a computable
function f:
» FPT algorithm < f(k)n®®)

» XP algorithm < nf(k)
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Parameterized complexity: reminder

Definition

|\

For an input of size n with a parameter k and a computable
function f:

» FPT algorithm < f(k)n®®)

» XP algorithm < nf(K)

N

|\

,_[Nice tree decomposition of G(V, E) [Kloks, 1994]]

A rooted tree T, each node v € T has a bag X, C V, such that:

» forac V, {v : a€ X,} is a connected subtree of T

» if ab € E, then dv such that a,b € X,

» introduce node v < one child v s.t. X, = X,, Ua, a€ X,
» forget node v < one child v; s.it. X, = X, \ a, a€ X,

» join node v < two children vy, vo s.t. X, = X,;, = X,,

Leaf and root bags are empty, tw = max size of a bag -1

16/21



Parameterized complexity for TD-PC (1) Preliminaries

Theorem [CDFK, 2024+])

TD-PCis FPT w.r.t. tw and tmax (total number of time-steps) ]

Dynamic programing on a nice tree decomposition
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Parameterized complexity for TD-PC (1) Preliminaries

Theorem [CDFK, 2024+])

TD-PCis FPT w.r.t. tw and tynax (total number of time-steps) ]

Dynamic programing on a nice tree decomposition

Observation

Any arc of D appears in at most tnax paths of a TD-PC = At
most p = (t;") - tmax temporally disjoint paths contain at least one
arc from a given bag

For simplicity, duplicate the arcs such that each has only one time
label (so a TD-PC uses arc-disjoint paths)
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Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v

= At most
types for any node
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Parameterized complexity for TD-PC (3) Consistency

Consistency of a type

» The ordered vertices V;, the arcs of Q;, and the information
about the arcs going outside of X, induce temporal paths

» The arcs going outside of X, exist in the digraph and their
labels are compatible with the order

» Every vertex of X, isiin a V;

Now, we compute from the bottom-up, maintaining consistency.
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Dynamic programing using consistent types of partial solutions

» Leaf node: No partial solution since empty
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Running time 20(plogp)p 5o FPT w.rt. p = f(tw, tmax)
And for TPC?
Same principle, but the paths can intersect = More information in

type: how many times in the solution does Q; appear = Running
time kO(P1ogP) h where k € O(n) is the solution size = XP w.r.t. p 20/21



Conclusion and future work

Temporal class TPC TD-PC
Oriented paths O(¢n) O(¢n)
Rooted trees O(¢n?) O(¢n?)
Oriented trees O(n? + n3) NP-hard
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