The Closed Geodetic Game: algorithms and strategies

Antoine Dailly^{1,2}, Harmender Gahlawat³, Zin Mar Myint⁴

Prigast P-GASE Workshop, October 28th, 2024

¹ LIMOS, Université Clermont-Auvergne, Clermont-Ferrand, France ² TSCF, INRAE, Clermont-Ferrand, France ³ G-SCOP, Université Grenoble Alpes, France 4 Indian Institute of Technology Dharwad, India

Funded by ANR GRALMECO, I-SITE CAP 20-25, Doctoral Fellowship in India for ASEAN DIA:2020-25.

Geodetic closure [Harary & Nieminen, 1981]

For a set S of vertices: the set of all vertices in shortest paths between vertices of S , denoted by (S) .

Geodetic closure [Harary & Nieminen, 1981]

For a set S of vertices: the set of all vertices in shortest paths between vertices of S , denoted by (S) .

Geodetic closure [Harary & Nieminen, 1981]

For a set S of vertices: the set of all vertices in shortest paths between vertices of S , denoted by (S) .

Geodetic set [Buckley, Harary & Quintas, 1988]

A set S of vertices of graph $G(V, E)$ such that $(S) = V$.

Geodetic closure [Harary & Nieminen, 1981]

For a set S of vertices: the set of all vertices in shortest paths between vertices of S, denoted by (S) .

Geodetic set [Buckley, Harary & Quintas, 1988]

A set S of vertices of graph $G(V, E)$ such that $(S) = V$.

 \blacktriangleright Many combinatorial and algorithmic results...

Geodetic closure [Harary & Nieminen, 1981]

For a set S of vertices: the set of all vertices in shortest paths between vertices of S, denoted by (S) .

Geodetic set [Buckley, Harary & Quintas, 1988]

A set S of vertices of graph $G(V, E)$ such that $(S) = V$.

 \blacktriangleright Many combinatorial and algorithmic results... which we will not care about in this talk! $_{2/11}$

Geodetic Game [Buckley & Harary, 1985]

Two players alternate adding vertices to S until it is geodetic.

Geodetic Game [Buckley & Harary, 1985]

Two players alternate adding vertices to S until it is geodetic.

Let us play! (under normal convention)

Geodetic Game [Buckley & Harary, 1985]

Two players alternate adding vertices to S until it is geodetic.

Let us play! (under normal convention)

Geodetic Game [Buckley & Harary, 1985]

Two players alternate adding vertices to S until it is geodetic.

Let us play! (under normal convention)

Geodetic Game [Buckley & Harary, 1985]

Two players alternate adding vertices to S until it is geodetic.

Let us play! (under normal convention) Seems like I'm the best. Θ

Geodetic Game [Buckley & Harary, 1985]

Two players alternate adding vertices to S until it is geodetic.

Let us play! (under normal convention) Seems like I'm the best. Θ

- \triangleright Complete graphs, cycles, complete bipartite graphs, *n*-cubes [Buckley & Harary, 1985]
- ▶ Generalized wheels [Nečásková, 1993]
- ▶ Complete multipartite graphs, hypercubes, graphs with a unique optimal geodetic set [Haynes, Henning & Tiller, 2003]

Closed Geodetic Game [Buckley & Harary, 1985]

Two players alternate adding to S vertices **not in** (**S**) until S is geodetic.

Let us play! (under *normal* convention) This time, you begin.

Let us play! (under *normal* convention) This time, you begin.

Let us play! (under *normal* convention) This time, you begin. Well I'm still the best. \bigcirc

Let us play! (under *normal* convention) This time, you begin. Well I'm still the best. \bigcirc

- \blacktriangleright Complete graphs, cycles, complete bipartite graphs, *n*-cubes [Buckley & Harary, 1985]
- \blacktriangleright Linear-time algorithm for Grundy values of trees [Araujo et al., 2024]

Let us play! (under *normal* convention) This time, you begin. Well I'm still the best. \bigcirc

- \blacktriangleright Complete graphs, cycles, complete bipartite graphs, *n*-cubes [Buckley & Harary, 1985]
- \blacktriangleright Linear-time algorithm for Grundy values of trees [Araujo et al., 2024]

 \rightarrow We study the CLOSED GEODETIC GAME

Some trivial ones

 \blacktriangleright $\mathcal{G}(K_n) = n \mod 2$ (every vertex has to be selected)

- \blacktriangleright $\mathcal{G}(K_n) = n \mod 2$ (every vertex has to be selected)
- ▶ $G(K_{1,n}) = 1 (n \mod 2)$ (every vertex will be selected)

- \blacktriangleright $\mathcal{G}(K_n) = n \mod 2$ (every vertex has to be selected)
- ▶ $G(K_{1,n}) = 1 (n \mod 2)$ (every vertex will be selected)
- \blacktriangleright $\mathcal{G}(\mathcal{C}_n) = n \mod 2$ (symmetry strategy)

- \blacktriangleright $\mathcal{G}(K_n) = n \mod 2$ (every vertex has to be selected)
- ▶ $G(K_{1,n}) = 1 (n \mod 2)$ (every vertex will be selected)
- \blacktriangleright $\mathcal{G}(\mathcal{C}_n) = n \mod 2$ (symmetry strategy)

- \blacktriangleright $\mathcal{G}(K_n) = n \mod 2$ (every vertex has to be selected)
- ▶ $G(K_{1,n}) = 1 (n \mod 2)$ (every vertex will be selected)
- \blacktriangleright $\mathcal{G}(\mathcal{C}_n) = n \mod 2$ (symmetry strategy)

- \blacktriangleright $\mathcal{G}(K_n) = n \mod 2$ (every vertex has to be selected)
- ▶ $G(K_{1,n}) = 1 (n \mod 2)$ (every vertex will be selected)
- \blacktriangleright $\mathcal{G}(\mathcal{C}_n) = n \mod 2$ (symmetry strategy)

- \blacktriangleright $\mathcal{G}(K_n) = n \mod 2$ (every vertex has to be selected)
- ▶ $G(K_{1,n}) = 1 (n \mod 2)$ (every vertex will be selected)
- \blacktriangleright $\mathcal{G}(\mathcal{C}_n) = n \mod 2$ (symmetry strategy)

- \blacktriangleright $\mathcal{G}(K_n) = n \mod 2$ (every vertex has to be selected)
- ▶ $G(K_{1,n}) = 1 (n \mod 2)$ (every vertex will be selected)
- \blacktriangleright $\mathcal{G}(\mathcal{C}_n) = n \mod 2$ (symmetry strategy)

Some trivial ones

- \blacktriangleright $\mathcal{G}(K_n) = n \mod 2$ (every vertex has to be selected)
- ▶ $G(K_{1,n}) = 1 (n \mod 2)$ (every vertex will be selected)
- \blacktriangleright $\mathcal{G}(\mathcal{C}_n) = n \mod 2$ (symmetry strategy)

Some less-trivial ones

- \blacktriangleright $\mathcal{G}(P_n) = n \mod 2$ (the value is expected, but the proof is nontrivial!)
- \blacktriangleright $\mathcal{G}(K_{m,n}) = 0$ if m and n have the same parity, and 2 otherwise

Proposition

A multidimensional grid has outcome $\mathcal N$ if and only if all its dimensions are odd.

Strategy

Proposition

A multidimensional grid has outcome $\mathcal N$ if and only if all its dimensions are odd.

Strategy

▶ First move: play in the middle vertex

Proposition

A multidimensional grid has outcome $\mathcal N$ if and only if all its dimensions are odd.

Strategy

- ▶ First move: play in the middle vertex
- ▶ Afterwards:

Proposition

A multidimensional grid has outcome $\mathcal N$ if and only if all its dimensions are odd.

Strategy

- ▶ First move: play in the middle vertex
- ▶ Afterwards: symmetry strategy!

Theorem [D., Gahlawat & Myint, 2024+]

For the Cartesian, tensor and strong products, the outcome of the product is N if and only if the outcomes of the two graphs are N .

Theorem [D., Gahlawat & Myint, 2024+]

For the Cartesian, tensor and strong products, the outcome of the product is N if and only if the outcomes of the two graphs are N .

Proof idea (for tensor product)

Theorem [D., Gahlawat & Myint, 2024+]

For the Cartesian, tensor and strong products, the outcome of the product is N if and only if the outcomes of the two graphs are N .

Proof idea (for tensor product)

Assume G and H are N .

 \blacktriangleright 1st move: apply the strategy

Theorem [D., Gahlawat & Myint, 2024+]

For the Cartesian, tensor and strong products, the outcome of the product is N if and only if the outcomes of the two graphs are N .

Proof idea (for tensor product)

- \blacktriangleright 1st move: apply the strategy
- \blacktriangleright Same row/column

Theorem [D., Gahlawat & Myint, 2024+]

For the Cartesian, tensor and strong products, the outcome of the product is $\mathcal N$ if and only if the outcomes of the two graphs are N .

Proof idea (for tensor product)

- \blacktriangleright 1st move: apply the strategy
- ▶ Same row/column \Rightarrow do the same, associate columns/rows

Theorem [D., Gahlawat & Myint, 2024+]

For the Cartesian, tensor and strong products, the outcome of the product is $\mathcal N$ if and only if the outcomes of the two graphs are N .

Proof idea (for tensor product)

- \blacktriangleright 1st move: apply the strategy
- ▶ Same row/column \Rightarrow do the same, associate columns/rows
- ▶ Distinct move

Theorem [D., Gahlawat & Myint, 2024+]

For the Cartesian, tensor and strong products, the outcome of the product is $\mathcal N$ if and only if the outcomes of the two graphs are N .

Proof idea (for tensor product)

- \blacktriangleright 1st move: apply the strategy
- ▶ Same row/column \Rightarrow do the same, associate columns/rows
- ▶ Distinct move \Rightarrow apply the strategy on both graphs, associate rows and columns

Theorem [D., Gahlawat & Myint, 2024+]

For the Cartesian, tensor and strong products, the outcome of the product is $\mathcal N$ if and only if the outcomes of the two graphs are N .

Proof idea (for tensor product)

- \blacktriangleright 1st move: apply the strategy
- ▶ Same row/column \Rightarrow do the same, associate columns/rows
- ▶ Distinct move \Rightarrow apply the strategy on both graphs, associate rows and columns
- \blacktriangleright Move on associated rows/columns

Theorem [D., Gahlawat & Myint, 2024+]

For the Cartesian, tensor and strong products, the outcome of the product is N if and only if the outcomes of the two graphs are N .

Proof idea (for tensor product)

- \blacktriangleright 1st move: apply the strategy
- ▶ Same row/column \Rightarrow do the same, associate columns/rows
- ▶ Distinct move \Rightarrow apply the strategy on both graphs, associate rows and columns
- \blacktriangleright Move on associated rows/columns ⇒ Answer on associated, associate new rows/columns $7/11$

Algorithms for Grundy values

[Araujo et al., 2024]'s algorithm for trees was based on the following:

If u is an articulation point linking maximal components G_1, \ldots, G_k , then: **Lemma**

$$
G, \{u\} \equiv (G_1, \{u\}) + \ldots + (G_k, \{u\}).
$$

Algorithms for Grundy values

[Araujo et al., 2024]'s algorithm for trees was based on the following:

If u is an articulation point linking maximal components G_1, \ldots, G_k , then: **Lemma**

$$
G, \{u\} \equiv (G_1, \{u\}) + \ldots + (G_k, \{u\}).
$$

In a tree, every vertex is either a leaf or an articulation point \Rightarrow Apply dynamic programing to compute the Grundy value

Theorem [D., Gahlawat & Myint, 2024+]

There is a linear-time algorithm computing the Grundy values of block graphs.

Theorem [D., Gahlawat & Myint, 2024+]

There is a linear-time algorithm computing the Grundy values of block graphs.

Proof idea

▶ All non-articulation points moves on a given clique are equivalent

Theorem [D., Gahlawat & Myint, 2024+]

There is a linear-time algorithm computing the Grundy values of block graphs.

Proof idea

▶ All non-articulation points moves on a given clique are equivalent

Theorem [D., Gahlawat & Myint, 2024+]

There is a linear-time algorithm computing the Grundy values of block graphs.

- ▶ All non-articulation points moves on a given clique are equivalent
- ▶ Decompose after each move into subgraphs with at most one selected vertex

Theorem [D., Gahlawat & Myint, 2024+]

There is a linear-time algorithm computing the Grundy values of block graphs.

- ▶ All non-articulation points moves on a given clique are equivalent
- ▶ Decompose after each move into subgraphs with at most one selected vertex

Theorem [D., Gahlawat & Myint, 2024+]

There is a linear-time algorithm computing the Grundy values of block graphs.

- ▶ All non-articulation points moves on a given clique are equivalent
- ▶ Decompose after each move into subgraphs with at most one selected vertex

Theorem [D., Gahlawat & Myint, 2024+]

There is a linear-time algorithm computing the Grundy values of block graphs.

- ▶ All non-articulation points moves on a given clique are equivalent
- ▶ Decompose after each move into subgraphs with at most one selected vertex

Theorem [D., Gahlawat & Myint, 2024+]

There is a linear-time algorithm computing the Grundy values of block graphs.

- ▶ All non-articulation points moves on a given clique are equivalent
- ▶ Decompose after each move into subgraphs with at most one selected vertex

Theorem [D., Gahlawat & Myint, 2024+]

There is a linear-time algorithm computing the Grundy values of block graphs.

- ▶ All non-articulation points moves on a given clique are equivalent
- ▶ Decompose after each move into subgraphs with at most one selected vertex
- \blacktriangleright Dynamic programing $+$ storing intermediate values

Theorem [D., Gahlawat & Myint, 2024+]

There is a poly-time algorithm computing the Grundy values of cacti.

Theorem [D., Gahlawat & Myint, 2024+]

There is a poly-time algorithm computing the Grundy values of cacti.

Proof idea

 \blacktriangleright Three types of cacti with 1 or 2 selected vertices

Theorem [D., Gahlawat & Myint, 2024+]

There is a poly-time algorithm computing the Grundy values of cacti.

- \blacktriangleright Three types of cacti with 1 or 2 selected vertices
- ▶ Each move in a type of cactus allows a decomposition into a sum of cacti of those types

Theorem [D., Gahlawat & Myint, 2024+]

There is a poly-time algorithm computing the Grundy values of cacti.

- \blacktriangleright Three types of cacti with 1 or 2 selected vertices
- ▶ Each move in a type of cactus allows a decomposition into a sum of cacti of those types
- \blacktriangleright Dynamic programing $+$ storing intermediate values

Final words

Our work

- ▶ Grundy values for structured classes
- ▶ Outcomes for products
- ▶ DP algorithms for Grundy values extending the ideas for trees

Final words

Our work

- ▶ Grundy values for structured classes
- ▶ Outcomes for products
- ▶ DP algorithms for Grundy values extending the ideas for trees

Future work

- \blacktriangleright Characterize graphs with parity Grundy values
- ▶ Other products
- \triangleright Extend again the DP ideas to other decomposable graphs with strong geodetic structure

Final words

Our work

- ▶ Grundy values for structured classes
- ▶ Outcomes for products
- ▶ DP algorithms for Grundy values extending the ideas for trees

Future work

- \blacktriangleright Characterize graphs with parity Grundy values
- ▶ Other products
- \triangleright Extend again the DP ideas to other decomposable graphs with strong geodetic structure

