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Geodetic closure [Harary & Nieminen, 1981]]

For a set S of vertices: the set of all vertices in shortest paths
between vertices of S, denoted by (S).
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between vertices of S, denoted by (S).

Geodetic set [Buckley, Harary & Quintas, 1988]]
A set S of vertices of graph G(V/, E) such that (S) = V.

» Many combinatorial and algorithmic results... which we will

not care about in this talk! 211
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Geodetic Games

Geodetic Game [Buckley & Harary, 1985]]

Two players alternate adding vertices to S until it is geodetic.

@@@

Let us play! (under normal convention)
Seems like I'm the best. ©

» Complete graphs, cycles, complete bipartite graphs, n-cubes
[Buckley & Harary, 1985]

» Generalized wheels [Ne¢askova, 1993]

» Complete multipartite graphs, hypercubes, graphs with a
unique optimal geodetic set [Haynes, Henning & Tiller, 2003]
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Closed Geodetic Game [Buckley & Harary, 1985]]

Two players alternate adding to S vertices not in (S) until S is
geodetic.
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Geodetic Games IlI: Now Closed!

Closed Geodetic Game [Buckley & Harary, 1985]]

Two players alternate adding to S vertices not in (S) until S is

geodetic.
@—X o—(¢ Xx——O0 0—(¢ X——@
o O O

Let us play! (under normal convention) This time, you begin.
Well I'm still the best. ©

» Complete graphs, cycles, complete bipartite graphs, n-cubes
[Buckley & Harary, 1985]

» Linear-time algorithm for Grundy values of trees [Araujo et
al., 2024]

— We study the CLOSED GEODETIC GAME o
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Some trivial ones
» G(K,) = n mod 2 (every vertex has to be selected)
» G(K1,n) =1—(nmod 2) (every vertex will be selected)
» G(C,) = nmod 2 (symmetry strategy)

% OO O

Some less-trivial ones

» G(P,) = nmod 2 (the value is expected, but the proof is
nontriviall)

» G(Km,n) =0 if m and n have the same parity, and 2 otherwise
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A fun result: grids

Proposition

A multidimensional grid has outcome N if and only if all its
dimensions are odd.

Strategy
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A fun result: grids

Proposition

A multidimensional grid has outcome N if and only if all its
dimensions are odd.

Strategy

» First move: play in the middle vertex

» Afterwards: symmetry strategy!
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Algorithms for Grundy values

[Araujo et al., 2024]'s algorithm for trees was based on the
following:

If u is an articulation point linking maximal components
Gi,..., Gk, then:

G,{u} = (Gl,{u}) + ...+ (Gk,{u}).
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Algorithms for Grundy values

[Araujo et al., 2024]'s algorithm for trees was based on the
following:

If u is an articulation point linking maximal components
Gy, ..., G, then:

G,{u} =(G1,{u}) + ...+ (Gk,{u}).

In a tree, every vertex is either a leaf or an articulation point =
Apply dynamic programing to compute the Grundy value
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