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Geodetic Sets

For a set S of vertices: the set of all vertices in shortest paths
between vertices of S, denoted by (S).

Geodetic closure [Harary & Nieminen, 1981]

A set S of vertices of graph G(V , E ) such that (S) = V .

Geodetic set [Buckley, Harary & Quintas, 1988]

▶ Many combinatorial and algorithmic results...

which we will
not care about in this talk!
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Geodetic Games

Two players alternate adding vertices to S until it is geodetic.

Geodetic Game [Buckley & Harary, 1985]

Let us play! (under normal convention)
Seems like I’m the best.

▶ Complete graphs, cycles, complete bipartite graphs, n-cubes
[Buckley & Harary, 1985]

▶ Generalized wheels [Nečásková, 1993]
▶ Complete multipartite graphs, hypercubes, graphs with a

unique optimal geodetic set [Haynes, Henning & Tiller, 2003]
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Geodetic Games II: Now Closed!

Two players alternate adding to S vertices not in (S) until S is
geodetic.

Closed Geodetic Game [Buckley & Harary, 1985]

Let us play! (under normal convention) This time, you begin.
Well I’m still the best.

▶ Complete graphs, cycles, complete bipartite graphs, n-cubes
[Buckley & Harary, 1985]

▶ Linear-time algorithm for Grundy values of trees [Araujo et
al., 2024]

→ We study the Closed Geodetic Game
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First results: Grundy values

Some trivial ones
▶ G(Kn) = n mod 2 (every vertex has to be selected)

▶ G(K1,n) = 1 − (n mod 2) (every vertex will be selected)
▶ G(Cn) = n mod 2 (symmetry strategy)

Some less-trivial ones
▶ G(Pn) = n mod 2 (the value is expected, but the proof is

nontrivial!)
▶ G(Km,n) = 0 if m and n have the same parity, and 2 otherwise
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A fun result: grids

A multidimensional grid has outcome N if and only if all its
dimensions are odd.

Proposition

Strategy

▶ First move: play in the middle vertex
▶ Afterwards: symmetry strategy!
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Product results

For the Cartesian, tensor and strong products, the outcome of
the product is N if and only if the outcomes of the two graphs
are N .

Theorem [D., Gahlawat & Myint, 2024+]

Proof idea (for tensor product)
Assume G and H are N .

▶ 1st move: apply the strategy
▶ Same row/column ⇒ do the same,

associate columns/rows
▶ Distinct move ⇒ apply the

strategy on both graphs, associate
rows and columns

▶ Move on associated rows/columns
⇒ Answer on associated, associate
new rows/columns
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Algorithms for Grundy values
[Araujo et al., 2024]’s algorithm for trees was based on the
following:

If u is an articulation point linking maximal components
G1, . . . , Gk , then:

G , {u} ≡ (G1, {u}) + . . . + (Gk , {u}).

Lemma

G1 G2
u

≡ G1 G2
u u

+

In a tree, every vertex is either a leaf or an articulation point ⇒
Apply dynamic programing to compute the Grundy value

8/11
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Algorithms for Grundy values: block graphs

There is a linear-time algorithm computing the Grundy values of
block graphs.

Theorem [D., Gahlawat & Myint, 2024+]

Proof idea

▶ All non-articulation points
moves on a given clique are
equivalent

▶ Decompose after each move
into subgraphs with at most
one selected vertex

▶ Dynamic programing +
storing intermediate values

++
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Algorithms for Grundy values: cacti

There is a poly-time algorithm computing the Grundy values of
cacti.

Theorem [D., Gahlawat & Myint, 2024+]

Proof idea
▶ Three types of cacti with 1 or 2 selected vertices

▶ Each move in a type of cactus allows a decomposition into a
sum of cacti of those types

▶ Dynamic programing + storing intermediate values
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Final words
Our work
▶ Grundy values for structured classes
▶ Outcomes for products
▶ DP algorithms for Grundy values extending the ideas for trees

Future work
▶ Characterize graphs with parity Grundy values
▶ Other products
▶ Extend again the DP ideas to other decomposable graphs with

strong geodetic structure
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