Algorithms and hardness for Metric Dimension on
directed graphs

Antoine Dailly, Florent Foucaud, Anni Hakanen

LIMOS, Clermont-Ferrand
Funded by ANR GRALMECO

WG2023
June 30, 2023

1/15



Where does it come from?

2/15



Where does it come from?

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use
of at least four satellites

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use
of at least four satellites

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use
of at least four satellites

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use
of at least four satellites

2/15



Where does it come from?

GPS, GLONASS, Galileo, How many "satellites" would
Beidou, IRNSS, QZSS: use | need in a given graph?
of at least four satellites

2/15



Metric Dimension

Definition
b resolves u and v if dist(b, u) #dist(b, v) ]

3/15



Metric Dimension

Definition
b resolves u and v if dist(b, u) #dist(b, v) ]

3/15



Metric Dimension

Definition
b resolves u and v if dist(b, u) #dist(b, v) ]

3/15



Metric Dimension

Definition
b resolves u and v if dist(b, u) #dist(b, v) ]

3/15



Metric Dimension

Definition
b resolves u and v if dist(b, u) #dist(b, v) ]

3/15



Metric Dimension

Definition
b resolves u and v if dist(b, u) #dist(b, v) ]

3/15



Metric Dimension

Definition
b resolves u and v if dist(b, u) #dist(b, v) ]

3/15



Metric Dimension

Definition
b resolves u and v if dist(b, u) #dist(b, v) ]

Resolving Set [Slater, 1975] [Harary & Melter, 1976]]

R < V(G) is a resolving set of G iff for every pair {u, v}, there is
b e R that resolves u and v

3/15



Metric Dimension

Definition
b resolves u and v if dist(b, u) #dist(b, v) ]

,_[Resolving Set [Slater, 1975] [Harary & Melter, 1976]]

R < V(G) is a resolving set of G iff for every pair {u, v}, there is
b e R that resolves u and v

|\ J

KiMetric Dimension]

MD(G) = minimum size of a resolving set of G

|\ J

3/15



Basic results
1. MD(G)=1 < G is a path 00000

4/15



Basic results
1. MD(G)=1 < G is a path 00000

2. MD(G)=n-1 o G is K,

4/15



Basic results
1. MD(G)=1 < G is a path 00000

2. MD(G)=n-1 o G is K,
3. Trees?

4/15



Basic results
1. MD(G)=1 < G is a path 00000

2. MD(G)=n-1 o G is K,
3. Trees?

Paths with degree 2 inner vertices, and degree 1 and = 3 end-
points.

4/15



Basic results
1. MD(G)=1 < G is a path 00000

2. MD(G)=n-1 o G is K,
3. Trees?

Paths with degree 2 inner vertices, and degree 1 and = 3 end-
points. If v has k legs, k—1 have =1 vertex in a resolving set.

4/15



Basic results
1. MD(G)=1 < G is a path 00000

2. MD(G)=n-1 o G is K,
3. Trees?

Paths with degree 2 inner vertices, and degree 1 and = 3 end-
points. If v has k legs, k—1 have =1 vertex in a resolving set.

Simple leg rule: If v has k=2 legs, select k—1 leg endpoints.
4/15



Basic results
1. MD(G)=1 < G is a path 00000

2. MD(G)=n-1 o G is K,
3. Trees? The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and = 3 end-
points. If v has k legs, k—1 have =1 vertex in a resolving set.

Simple leg rule: If v has k=2 legs, select k—1 leg endpoints.

4/15



A difficult problem

planar

[bipartite]

outerplanar

perfect

chordal

/

cactus

| tree

cactus
block

split

interval

cograph

threshold

5/15



A difficult problem

planar

[bipartite]

outerplanar

perfect

chordal

/

cactus

| tree

W/[2]-complete and no better than log(n) approx in poly-time on subcubic graphs [HN13]

cactus
block

split

interval

cograph

threshold

5/15



A difficult problem

planar

Undirected graphs

[bipartite]

outerplanar

perfect

chordal

e

cactus

| tree

cactus
block

split

interval

cograph

threshold

W/[2]-complete and no better than log(n) approx in poly-time on subcubic graphs [HN13]

5/15



A difficult problem

Directed graphs

Undirected graphs

cactus
block

interval
threshold

bipartite

outerplanar

WI[2]-complete and no better than log(n) ap-
prox in poly-time on subcubic graphs [HN13]

Oriented graphs

5/15



A difficult problem

Directed graphs

Undirected graphs

cactus
block

interval
threshold

bipartite

bipartite
DAG

outerplanar

Oriented graphs

orientation of tree

WI[2]-complete and no better than log(n) ap-
prox in poly-time on subcubic graphs [HN13]

5/15




A difficult problem (%) = our results

Directed graphs

di-tree (*)

Undirected graphs

FPT modular-width (x)

cactus
block

interval
threshold

bipartite

outerplanar

bipartite
DAG

Oriented graphs

orientation of planar (*)

planar
DAG (+)

orientation of unicyclic (x)

orientation of tree

WI[2]-complete and no better than log(n) ap-
prox in poly-time on subcubic graphs [HN13]

5/15




Our results

Theorem [D., Foucaud & Hakanen, 2023]]

Linear-time algorithms for minimum-size resolving sets of di-trees
and orientations of unicyclic graphs.

Theorem [D., Foucaud & Hakanen, 2023]]

Metric Dimension is NP-complete for planar triangle-free DAGs
of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023]]

FPT algorithm for Metric Dimension parameterized by directed
modular width.

6/15



Di-trees

Definition

From a tree, transform every edge into an arc or a 2-cycle. ]

7/15



Di-trees

Definition

From a tree, transform every edge into an arc or a 2-cycle. ]

Algorithm: some mandatory vertices

7/15



Di-trees

Definition

From a tree, transform every edge into an arc or a 2-cycle. ]

Algorithm: some mandatory vertices

» Simple leg rule in strongly connected components

O«

7/15



Di-trees

Definition

From a tree, transform every edge into an arc or a 2-cycle. ]

Algorithm: some mandatory vertices

» Simple leg rule in strongly connected components

» Sources
(0]
O« 04\0

7/15



Di-trees

Definition

From a tree, transform every edge into an arc or a 2-cycle. ]

Algorithm: some mandatory vertices
» Simple leg rule in strongly connected components
» Sources

» Resolving sets of in-twins

O<+>»0

N

O<«—>»0

"

7/15



Di-trees

Definition

From a tree, transform every edge into an arc or a 2-cycle. ]

Algorithm: some mandatory vertices
» Simple leg rule in strongly connected components
» Sources

» Resolving sets of in-twins

... but some refinement is needed!

7/15



Refining in-twins

Almost—in—twins]

Vertices that share the same in-neighbour and:

8/15



Refining in-twins

Almost—in—twins]

Vertices that share the same in-neighbour and:
> either are not in a nontrivial strongly connected
component;

8/15



Refining in-twins

Almost—in—twins]

Vertices that share the same in-neighbour and:
> either are not in a nontrivial strongly connected
component;

» or are the endpoint of a so-called escalator.

8/15



Refining in-twins

Almost—in—twins]

Vertices that share the same in-neighbour and:
> either are not in a nontrivial strongly connected
component;

» or are the endpoint of a so-called escalator.

= For each set of k almost-in-twins, take k—1 in the resolving set

8/15



Refining legs

Definition .
In a strongly connected component, a special leg is a leg that:

> spans from a degree =3 (in the component) vertex or a
vertex with an in-arc coming from outside the component

9/15



Refining legs

Definition

In a
>

strongly connected component, a special leg is a leg that:
spans from a degree >3 (in the component) vertex or a
vertex with an in-arc coming from outside the component

has at least one out-arc from a vertex other than its
endpoint and no other in-arc from outside

9/15



Refining legs

Definition

In a
>

strongly connected component, a special leg is a leg that:
spans from a degree >3 (in the component) vertex or a
vertex with an in-arc coming from outside the component

has at least one out-arc from a vertex other than its
endpoint and no other in-arc from outside

— Conflict between pairs!

9/15



Refining legs

Definition

In a
>

strongly connected component, a special leg is a leg that:
spans from a degree >3 (in the component) vertex or a
vertex with an in-arc coming from outside the component

has at least one out-arc from a vertex other than its
endpoint and no other in-arc from outside

— Conflict between pairs!

= Take the endpoint of each special leg

9/15



The algorithm for di-trees

Theorem [D., Foucaud & Hakanen, 2023]]

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Algorithm

10/15



The algorithm for di-trees

Theorem [D., Foucaud & Hakanen, 2023]]

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins

10/15



The algorithm for di-trees

Theorem [D., Foucaud & Hakanen, 2023]]

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

10/15



The algorithm for di-trees

Theorem [D., Foucaud & Hakanen, 2023]]

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component
2.1 Solve some special cases

10/15



The algorithm for di-trees

Theorem [D., Foucaud & Hakanen, 2023]]

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Solve some special cases
2.2 Take the endpoint of every special leg

10/15



The algorithm for di-trees

Theorem [D., Foucaud & Hakanen, 2023]]

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Solve some special cases
2.2 Take the endpoint of every special leg
2.3 Resolve the remaining standard legs

10/15



The algorithm for di-trees

Theorem [D., Foucaud & Hakanen, 2023]]

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Solve some special cases
2.2 Take the endpoint of every special leg
2.3 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

10/15



Parameterized complexity

Theorem [D., Foucaud & Hakanen, 2023]]

Thereis an @(n3+m)+@(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.

11/15



Parameterized complexity

Theorem [D., Foucaud & Hakanen, 2023]]

Thereis an @(n3+m)+@(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.

Algorithm
Generalized from [Belmonte et al., 2017]

11/15



Parameterized complexity

Theorem [D., Foucaud & Hakanen, 2023]]

Thereis an @(n3+m)+@(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.

Algorithm
Generalized from [Belmonte et al., 2017]
1. Compute all the distances [Floyd-Warshall]

2. Obtain an optimal modular decomposition [McConnell & de
Montgolfier, 2005]

11/15



Parameterized complexity

Theorem [D., Foucaud & Hakanen, 2023]]

Thereis an @(n3+m)+@(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.

Algorithm
Generalized from [Belmonte et al., 2017]
1. Compute all the distances [Floyd-Warshall]

2. Obtain an optimal modular decomposition [McConnell & de
Montgolfier, 2005]

3. Start from the trivial modules, and combine them (dynamic
programming)

11/15



Modular decompositions

/_[Definition [Gallai, 1967] (and many others)]

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.

~N

12/15



Modular decompositions

/_[Definition [Gallai, 1967] (and many others)]

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.

~N

12/15



Modular decompositions

/_[Definition [Gallai, 1967] (and many others)]

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.

~N

12/15



Modular decompositions

,_{Definition [Gallai, 1967] (and many others)]

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.

~

e

12/15



Modular decompositions

,_{Definition [Gallai, 1967] (and many others)]

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.

A factorization is the graph of the modules.

A modular decomposition is obtained by repeating factorizations.

~

D lp e

12/15



Modular decompositions

,_{Definition [Gallai, 1967] (and many others)]

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.

A factorization is the graph of the modules.

A modular decomposition is obtained by repeating factorizations.

~

e

12/15



Modular decompositions

,_{Definition [Gallai, 1967] (and many others)]

of X sees vertices of X in the same way.
A factorization is the graph of the modules.

A module is a set X of vertices such that every vertex outside

A modular decomposition is obtained by repeating factorizations.

~

/ % e

12/15



Modular decompositions

,_{Definition [Gallai, 1967] (and many others)]

of X sees vertices of X in the same way.
A factorization is the graph of the modules.

one factorization step.

A module is a set X of vertices such that every vertex outside

A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in

~

ST ffe

12/15



Modular decompositions

,_{Definition [Gallai, 1967] (and many others)]

of X sees vertices of X in the same way.
A factorization is the graph of the modules.

one factorization step.

A module is a set X of vertices such that every vertex outside

A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in

~

/ % e

width 3

12/15



Modular decompositions

,_{Definition [Gallai, 1967] (and many others)]

of X sees vertices of X in the same way.
A factorization is the graph of the modules.

one factorization step.

A module is a set X of vertices such that every vertex outside

A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in

The modular width is the min width over all decompositions.

~

/ % e

width 3

©

12/15



Modular decompositions

,_{Definition [Gallai, 1967] (and many others)]

of X sees vertices of X in the same way.
A factorization is the graph of the modules.

one factorization step.

A module is a set X of vertices such that every vertex outside

A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in

The modular width is the min width over all decompositions.

~

e off e

mw 3

width 3

©

12/15



Properties of the modular decomposition

1. Given vertices x,y € M; and ze M;,

X0,

yor

13/15



Properties of the modular decomposition
1. Given vertices x,y € M; and z € M;, dist(x,z) =dist(y,z) and

dist(z,x) = dist(z, y)

X0,

yor

Y

13/15



Properties of the modular decomposition

1. Given vertices x,y € M; and z € M;, dist(x,z) =dist(y,z) and
dist(z,x) = dist(z, y)
= All nontrivial modules contain a vertex in the solution

X0,

yor

13/15



Properties of the modular decomposition
1. Given vertices x,y € M; and z € M;, dist(x,z) =dist(y,z) and
dist(z,x) = dist(z,y)
= All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width

13/15



Properties of the modular decomposition
1. Given vertices x,y € M; and z € M;, dist(x,z) =dist(y,z) and
dist(z,x) = dist(z,y)
= All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

13/15



Properties of the modular decomposition
1. Given vertices x,y € M; and z € M;, dist(x,z) =dist(y,z) and
dist(z,x) = dist(z,y)
= All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite
= Allows us to bound DP steps by f(mw)

13/15



Properties of the modular decomposition
1. Given vertices x,y € M; and z € M;, dist(x,z) =dist(y,z) and
dist(z,x) = dist(z,y)
= All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the
modular width or infinite
= Allows us to bound DP steps by f(mw)
3. Given vertices x1,x> € M;,

X10

X20

13/15



Properties of the modular decomposition
1. Given vertices x,y € M; and z € M;, dist(x,z) =dist(y,z) and
dist(z,x) = dist(z,y)
= All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

= Allows us to bound DP steps by f(mw)
3. Given vertices x1,xp € M;, if dist(xy,y) # dist(x2, ),

X104

#&oy

X20™M

13/15



Properties of the modular decomposition
1. Given vertices x,y € M; and z € M;, dist(x,z) =dist(y,z) and
dist(z,x) = dist(z,y)
= All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

= Allows us to bound DP steps by f(mw)
3. Given vertices x1,xp € M;, if dist(xy,y) # dist(x2,y), then

yeM;
X1
:%y
X2

13/15



Properties of the modular decomposition
1. Given vertices x,y € M; and z € M;, dist(x,z) =dist(y,z) and
dist(z,x) = dist(z,y)
= All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

= Allows us to bound DP steps by f(mw)
3. Given vertices x1,xp € M;, if dist(xy,y) # dist(x2,y), then
y € M; and one of x1,x2 will resolve y and z¢ M;

X1
R
y

X20

13/15



Properties of the modular decomposition
1. Given vertices x,y € M; and z € M;, dist(x,z) =dist(y,z) and
dist(z,x) = dist(z,y)
= All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite
= Allows us to bound DP steps by f(mw)
3. Given vertices x1,xp € M;, if dist(xy,y) # dist(x2,y), then
y € M; and one of x1,x2 will resolve y and z¢ M;
= Combining local solutions is "easy" in this case

X1
R
y

X20

13/15



Properties of the modular decomposition
1. Given vertices x,y € M; and z € M;, dist(x,z) =dist(y,z) and
dist(z,x) = dist(z,y)
= All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite
= Allows us to bound DP steps by f(mw)
3. Given vertices x1,xp € M;, if dist(xy,y) # dist(x2,y), then
y € M; and one of x1,x2 will resolve y and z¢ M;
= Combining local solutions is "easy" in this case

oy

But what if, for some y € M;,

13/15



Properties of the modular decomposition
1. Given vertices x,y € M; and z € M;, dist(x,z) =dist(y,z) and
dist(z,x) = dist(z,y)
= All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite
= Allows us to bound DP steps by f(mw)
3. Given vertices x1,xp € M;, if dist(xy,y) # dist(x2,y), then
y € M; and one of x1,x2 will resolve y and z¢ M;
= Combining local solutions is "easy" in this case

But what if, for some y € M;,
dist(x1,y) = dist(x2, y) for every x1,x2 € M;?

13/15



d-constant vertices

Definition

In a module M, a vertex x is d-constant if dist(w,x) = d for
every w € Mg (where Mg is the local solution).

14/15



d-constant vertices

Definition

In a module M, a vertex x is d-constant if dist(w,x) = d for
every w € Mg (where Mg is the local solution).

14/15



d-constant vertices

Definition

In a module M, a vertex x is d-constant if dist(w,x) = d for
every w € Mg (where Mg is the local solution).

W? \ci\/\oy

/A\The local solution Mg does not resolve x and y!

14/15



d-constant vertices

Definition

In a module M, a vertex x is d-constant if dist(w,x) = d for
every w € Mg (where Mg is the local solution).

w d

d\/\’\oy

/A\The local solution Mg does not resolve x and y!

= We need to keep track of all d-constant vertices...

14/15



d-constant vertices

Definition

In a module M, a vertex x is d-constant if dist(w,x) = d for
every w € Mg (where Mg is the local solution).

w d

d\/\’\oy

/A\The local solution Mg does not resolve x and y!
= We need to keep track of all d-constant vertices...

... but def{l,...,mw,o0} so their number is bounded by mw+1 for
each factor!
= We can brute-force them when combining local solutions.

14/15



Final words

Our contribution to Metric Dimension on directed graphs

» NP-completeness for a very restricted class
» Linear-time algorithms (di-trees, orientations of unicyclic)

» FPT algorithm using modular decomposition

15/15



Final words

Our contribution to Metric Dimension on directed graphs

» NP-completeness for a very restricted class
» Linear-time algorithms (di-trees, orientations of unicyclic)

» FPT algorithm using modular decomposition

Future work
1. Orientations of /Directed outerplanar?
2. DAGs of maximum distance 27

3. Other parameterizations? Practical implementation?

15/15



Final words

Our contribution to Metric Dimension on directed graphs
» NP-completeness for a very restricted class
» Linear-time algorithms (di-trees, orientations of unicyclic)

» FPT algorithm using modular decomposition

Future work
1. Orientations of /Directed outerplanar?
2. DAGs of maximum distance 27
3. Other parameterizations? Practical implementation?

fzéaofzz% }j Sles

15/15



	Introduction
	Our results
	Di-trees
	Modular Width
	Conclusion

