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Where does it come from?

GPS, GLONASS, Galileo, How many "satellites" would
Beidou, IRNSS, QZSS: use | need in a given graph?
of at least four satellites
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Metric Dimension

Definition
b resolves u and v if dist(b, u) #dist(b, v) ]

,_[Resolving Set [Slater, 1975] [Harary & Melter, 1976]]

R < V(G) is a resolving set of G iff for every pair {u, v}, there is
b e R that resolves u and v

|\ J

KiMetric Dimension]

MD(G) = minimum size of a resolving set of G

|\ J
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Basic results
1. MD(G)=1 < G is a path 00000

2. MD(G)=n-1 o G is K,
3. Trees? The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and = 3 end-
points. If v has k legs, k—1 have =1 vertex in a resolving set.

Simple leg rule: If v has k=2 legs, select k—1 leg endpoints.
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A difficult problem (%) = our results
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Our results

Theorem [D., Foucaud & Hakanen, 2023]]

Linear-time algorithms for minimum-size resolving sets of di-trees
and orientations of unicyclic graphs.

Theorem [D., Foucaud & Hakanen, 2023]]

Metric Dimension is NP-complete for planar triangle-free DAGs
of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023]]

FPT algorithm for Metric Dimension parameterized by directed
modular width.
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Di-trees

Definition

From a tree, transform every edge into an arc or a 2-cycle. ]

Algorithm: some mandatory vertices
» Simple leg rule in strongly connected components
» Sources

» Resolving sets of in-twins

... but some refinement is needed!
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Refining in-twins

Almost—in—twins]

Vertices that share the same in-neighbour and:
> either are not in a nontrivial strongly connected
component;

» or are the endpoint of a so-called escalator.

= For each set of k almost-in-twins, take k—1 in the resolving set

8/15



Refining legs

Definition .
In a strongly connected component, a special leg is a leg that:

> spans from a degree =3 (in the component) vertex or a
vertex with an in-arc coming from outside the component

9/15



Refining legs

Definition

In a
>

strongly connected component, a special leg is a leg that:
spans from a degree >3 (in the component) vertex or a
vertex with an in-arc coming from outside the component

has at least one out-arc from a vertex other than its
endpoint and no other in-arc from outside

9/15



Refining legs

Definition

In a
>

strongly connected component, a special leg is a leg that:
spans from a degree >3 (in the component) vertex or a
vertex with an in-arc coming from outside the component

has at least one out-arc from a vertex other than its
endpoint and no other in-arc from outside

— Conflict between pairs!

9/15



Refining legs

Definition

In a
>

strongly connected component, a special leg is a leg that:
spans from a degree >3 (in the component) vertex or a
vertex with an in-arc coming from outside the component

has at least one out-arc from a vertex other than its
endpoint and no other in-arc from outside

— Conflict between pairs!

= Take the endpoint of each special leg
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The algorithm for di-trees

Theorem [D., Foucaud & Hakanen, 2023]]

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Solve some special cases
2.2 Take the endpoint of every special leg
2.3 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!
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Parameterized complexity

Theorem [D., Foucaud & Hakanen, 2023]]

Thereis an @(n3+m)+@(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.
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Parameterized complexity

Theorem [D., Foucaud & Hakanen, 2023]]

Thereis an @(n3+m)+@(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.

Algorithm
Generalized from [Belmonte et al., 2017]
1. Compute all the distances [Floyd-Warshall]

2. Obtain an optimal modular decomposition [McConnell & de
Montgolfier, 2005]

3. Start from the trivial modules, and combine them (dynamic
programming)
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of X sees vertices of X in the same way.
A factorization is the graph of the modules.

one factorization step.

A module is a set X of vertices such that every vertex outside

A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in

The modular width is the min width over all decompositions.
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Modular decompositions

,_{Definition [Gallai, 1967] (and many others)]

of X sees vertices of X in the same way.
A factorization is the graph of the modules.

one factorization step.

A module is a set X of vertices such that every vertex outside

A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in

The modular width is the min width over all decompositions.

~

e off e

mw 3

width 3

©
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1. Given vertices x,y € M; and z € M;, dist(x,z) =dist(y,z) and
dist(z,x) = dist(z,y)
= All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite
= Allows us to bound DP steps by f(mw)
3. Given vertices x1,xp € M;, if dist(xy,y) # dist(x2,y), then
y € M; and one of x1,x2 will resolve y and z¢ M;
= Combining local solutions is "easy" in this case

But what if, for some y € M;,
dist(x1,y) = dist(x2, y) for every x1,x2 € M;?
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d-constant vertices

Definition

In a module M, a vertex x is d-constant if dist(w,x) = d for
every w € Mg (where Mg is the local solution).

w d

d\/\’\oy

/A\The local solution Mg does not resolve x and y!
= We need to keep track of all d-constant vertices...

... but def{l,...,mw,o0} so their number is bounded by mw+1 for
each factor!
= We can brute-force them when combining local solutions.
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