
Algorithms and hardness for Metric Dimension on
directed graphs

Antoine Dailly, Florent Foucaud, Anni Hakanen
LIMOS, Clermont-Ferrand
Funded by ANR GRALMECO

WG2023
June 30, 2023

1/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

2/15



Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/15



Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/15



Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/15



Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/15



Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/15



Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/15



Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/15



Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/15



Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension

3/15



Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn
3. Trees?

The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.

4/15



Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn

3. Trees?

The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.

4/15



Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn
3. Trees?

The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.

4/15



Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn
3. Trees?

The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.

4/15



Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn
3. Trees?

The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points. If v has k legs, k −1 have ≥ 1 vertex in a resolving set.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.

4/15



Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn
3. Trees?

The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points. If v has k legs, k −1 have ≥ 1 vertex in a resolving set.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.
4/15



Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn
3. Trees? The simple leg rule gives an optimal resolving set

[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points. If v has k legs, k −1 have ≥ 1 vertex in a resolving set.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.
4/15



A difficult problem

(∗) = our results

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Directed graphs
Directed graphs

di-tree (∗)

Oriented graphs

Oriented graphs

orientation of unicyclic (∗)

orientation of treeorientation of tree

bipartite
DAG

planar
DAG (∗)

orientation of planar (∗)

W[2]-complete and no better than log(n) approx in poly-time on subcubic graphs [HN13]

W[2]-complete and no better than log(n) ap-
prox in poly-time on subcubic graphs [HN13]

FPT modular-width (∗)

5/15



A difficult problem

(∗) = our results

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Directed graphs
Directed graphs

di-tree (∗)

Oriented graphs

Oriented graphs

orientation of unicyclic (∗)

orientation of treeorientation of tree

bipartite
DAG

planar
DAG (∗)

orientation of planar (∗)

W[2]-complete and no better than log(n) approx in poly-time on subcubic graphs [HN13]

W[2]-complete and no better than log(n) ap-
prox in poly-time on subcubic graphs [HN13]

FPT modular-width (∗)

5/15



A difficult problem

(∗) = our results

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Directed graphs
Directed graphs

di-tree (∗)

Oriented graphs

Oriented graphs

orientation of unicyclic (∗)

orientation of treeorientation of tree

bipartite
DAG

planar
DAG (∗)

orientation of planar (∗)

W[2]-complete and no better than log(n) approx in poly-time on subcubic graphs [HN13]

W[2]-complete and no better than log(n) ap-
prox in poly-time on subcubic graphs [HN13]

FPT modular-width (∗)

5/15



A difficult problem

(∗) = our results

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Directed graphs

Directed graphs

di-tree (∗)

Oriented graphs

Oriented graphs

orientation of unicyclic (∗)

orientation of treeorientation of tree

bipartite
DAG

planar
DAG (∗)

orientation of planar (∗)

W[2]-complete and no better than log(n) approx in poly-time on subcubic graphs [HN13]

W[2]-complete and no better than log(n) ap-
prox in poly-time on subcubic graphs [HN13]

FPT modular-width (∗)

5/15



A difficult problem

(∗) = our results

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Directed graphs

Directed graphs

di-tree (∗)

Oriented graphs

Oriented graphs

orientation of unicyclic (∗)

orientation of tree

orientation of tree

bipartite
DAG

planar
DAG (∗)

orientation of planar (∗)

W[2]-complete and no better than log(n) approx in poly-time on subcubic graphs [HN13]

W[2]-complete and no better than log(n) ap-
prox in poly-time on subcubic graphs [HN13]

FPT modular-width (∗)

5/15



A difficult problem (∗) = our results

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree

Directed graphs

Directed graphs

di-tree (∗)

Oriented graphs

Oriented graphs

orientation of unicyclic (∗)

orientation of tree

orientation of tree

bipartite
DAG

planar
DAG (∗)

orientation of planar (∗)

W[2]-complete and no better than log(n) approx in poly-time on subcubic graphs [HN13]

W[2]-complete and no better than log(n) ap-
prox in poly-time on subcubic graphs [HN13]

FPT modular-width (∗)

5/15



Our results

Linear-time algorithms for minimum-size resolving sets of di-trees
and orientations of unicyclic graphs.

Theorem [D., Foucaud & Hakanen, 2023]

Metric Dimension is NP-complete for planar triangle-free DAGs
of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023]

FPT algorithm for Metric Dimension parameterized by directed
modular width.

Theorem [D., Foucaud & Hakanen, 2023]

6/15



Di-trees

From a tree, transform every edge into an arc or a 2-cycle.
Definition

Algorithm: some mandatory vertices

Ï Simple leg rule in strongly connected components
Ï Sources
Ï Resolving sets of in-twins

... but some refinement is needed!

7/15



Di-trees

From a tree, transform every edge into an arc or a 2-cycle.
Definition

Algorithm: some mandatory vertices

Ï Simple leg rule in strongly connected components
Ï Sources
Ï Resolving sets of in-twins

... but some refinement is needed!

7/15



Di-trees

From a tree, transform every edge into an arc or a 2-cycle.
Definition

Algorithm: some mandatory vertices
Ï Simple leg rule in strongly connected components

Ï Sources
Ï Resolving sets of in-twins

... but some refinement is needed!

7/15



Di-trees

From a tree, transform every edge into an arc or a 2-cycle.
Definition

Algorithm: some mandatory vertices
Ï Simple leg rule in strongly connected components
Ï Sources

Ï Resolving sets of in-twins

... but some refinement is needed!

7/15



Di-trees

From a tree, transform every edge into an arc or a 2-cycle.
Definition

Algorithm: some mandatory vertices
Ï Simple leg rule in strongly connected components
Ï Sources
Ï Resolving sets of in-twins

... but some refinement is needed!

7/15



Di-trees

From a tree, transform every edge into an arc or a 2-cycle.
Definition

Algorithm: some mandatory vertices
Ï Simple leg rule in strongly connected components
Ï Sources
Ï Resolving sets of in-twins

... but some refinement is needed!

7/15



Refining in-twins

Vertices that share the same in-neighbour and:

Ï either are not in a nontrivial strongly connected
component;

Ï or are the endpoint of a so-called escalator.

Almost-in-twins

⇒ For each set of k almost-in-twins, take k −1 in the resolving set

8/15



Refining in-twins

Vertices that share the same in-neighbour and:
Ï either are not in a nontrivial strongly connected

component;

Ï or are the endpoint of a so-called escalator.

Almost-in-twins

⇒ For each set of k almost-in-twins, take k −1 in the resolving set

8/15



Refining in-twins

Vertices that share the same in-neighbour and:
Ï either are not in a nontrivial strongly connected

component;
Ï or are the endpoint of a so-called escalator.

Almost-in-twins

⇒ For each set of k almost-in-twins, take k −1 in the resolving set

8/15



Refining in-twins

Vertices that share the same in-neighbour and:
Ï either are not in a nontrivial strongly connected

component;
Ï or are the endpoint of a so-called escalator.

Almost-in-twins

⇒ For each set of k almost-in-twins, take k −1 in the resolving set

8/15



Refining legs

In a strongly connected component, a special leg is a leg that:
Ï spans from a degree ≥ 3 (in the component) vertex or a

vertex with an in-arc coming from outside the component

Ï has at least one out-arc from a vertex other than its
endpoint and no other in-arc from outside

Definition

→ Conflict between pairs!

⇒ Take the endpoint of each special leg

9/15



Refining legs

In a strongly connected component, a special leg is a leg that:
Ï spans from a degree ≥ 3 (in the component) vertex or a

vertex with an in-arc coming from outside the component
Ï has at least one out-arc from a vertex other than its

endpoint and no other in-arc from outside

Definition

→ Conflict between pairs!

⇒ Take the endpoint of each special leg

9/15



Refining legs

In a strongly connected component, a special leg is a leg that:
Ï spans from a degree ≥ 3 (in the component) vertex or a

vertex with an in-arc coming from outside the component
Ï has at least one out-arc from a vertex other than its

endpoint and no other in-arc from outside

Definition

→ Conflict between pairs!

⇒ Take the endpoint of each special leg

9/15



Refining legs

In a strongly connected component, a special leg is a leg that:
Ï spans from a degree ≥ 3 (in the component) vertex or a

vertex with an in-arc coming from outside the component
Ï has at least one out-arc from a vertex other than its

endpoint and no other in-arc from outside

Definition

→ Conflict between pairs!

⇒ Take the endpoint of each special leg
9/15



The algorithm for di-trees

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Theorem [D., Foucaud & Hakanen, 2023]

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Solve some special cases
2.2 Take the endpoint of every special leg
2.3 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

10/15



The algorithm for di-trees

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Theorem [D., Foucaud & Hakanen, 2023]

Algorithm
1. Take every source, resolve each set of almost-in-twins

2. For each strongly connected component

2.1 Solve some special cases
2.2 Take the endpoint of every special leg
2.3 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

10/15



The algorithm for di-trees

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Theorem [D., Foucaud & Hakanen, 2023]

Algorithm
1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Solve some special cases
2.2 Take the endpoint of every special leg
2.3 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

10/15



The algorithm for di-trees

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Theorem [D., Foucaud & Hakanen, 2023]

Algorithm
1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Solve some special cases

2.2 Take the endpoint of every special leg
2.3 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

10/15



The algorithm for di-trees

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Theorem [D., Foucaud & Hakanen, 2023]

Algorithm
1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Solve some special cases
2.2 Take the endpoint of every special leg

2.3 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

10/15



The algorithm for di-trees

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Theorem [D., Foucaud & Hakanen, 2023]

Algorithm
1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Solve some special cases
2.2 Take the endpoint of every special leg
2.3 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

10/15



The algorithm for di-trees

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Theorem [D., Foucaud & Hakanen, 2023]

Algorithm
1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Solve some special cases
2.2 Take the endpoint of every special leg
2.3 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

10/15



Parameterized complexity

There is an O(n3+m)+O(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.

Theorem [D., Foucaud & Hakanen, 2023]

Algorithm
Generalized from [Belmonte et al., 2017]

1. Compute all the distances [Floyd-Warshall]
2. Obtain an optimal modular decomposition [McConnell & de

Montgolfier, 2005]
3. Start from the trivial modules, and combine them (dynamic

programming)

11/15



Parameterized complexity

There is an O(n3+m)+O(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.

Theorem [D., Foucaud & Hakanen, 2023]

Algorithm
Generalized from [Belmonte et al., 2017]

1. Compute all the distances [Floyd-Warshall]
2. Obtain an optimal modular decomposition [McConnell & de

Montgolfier, 2005]
3. Start from the trivial modules, and combine them (dynamic

programming)

11/15



Parameterized complexity

There is an O(n3+m)+O(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.

Theorem [D., Foucaud & Hakanen, 2023]

Algorithm
Generalized from [Belmonte et al., 2017]

1. Compute all the distances [Floyd-Warshall]
2. Obtain an optimal modular decomposition [McConnell & de

Montgolfier, 2005]

3. Start from the trivial modules, and combine them (dynamic
programming)

11/15



Parameterized complexity

There is an O(n3+m)+O(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.

Theorem [D., Foucaud & Hakanen, 2023]

Algorithm
Generalized from [Belmonte et al., 2017]

1. Compute all the distances [Floyd-Warshall]
2. Obtain an optimal modular decomposition [McConnell & de

Montgolfier, 2005]
3. Start from the trivial modules, and combine them (dynamic

programming)

11/15



Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.

A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

12/15



Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.

A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

12/15



Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.

A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

12/15



Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.

A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

12/15



Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.

The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

12/15



Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.

The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

12/15



Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.

The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

12/15



Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.

The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3

12/15



Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.

The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3

mw 3

12/15



Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3

mw 3

12/15



Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3
12/15



Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj ,

dist(x ,z)= dist(y ,z) and
dist(z ,x)= dist(z ,y)

⇒ All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the

modular width

or infinite
⇒ Allows us to bound DP steps by f (mw)

3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mwx1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

13/15



Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)

⇒ All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the

modular width

or infinite
⇒ Allows us to bound DP steps by f (mw)

3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z=

≤mwx1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

13/15



Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width

or infinite
⇒ Allows us to bound DP steps by f (mw)

3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z=

≤mwx1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

13/15



Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width

or infinite
⇒ Allows us to bound DP steps by f (mw)

3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

13/15



Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

13/15



Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)

3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

13/15



Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2

y̸=
z̸= y

x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

13/15



Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi , if dist(x1,y) ̸= dist(x2,y),

then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2
y̸=

z̸= y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

13/15



Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi , if dist(x1,y) ̸= dist(x2,y), then

y ∈Mi

and one of x1,x2 will resolve y and z ̸∈Mi
⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2
y̸=

z̸= y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

13/15



Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi , if dist(x1,y) ̸= dist(x2,y), then

y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2
y

̸=

z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

13/15



Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi , if dist(x1,y) ̸= dist(x2,y), then

y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi
⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mw

x1

x2
y

̸=

z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

13/15



Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi , if dist(x1,y) ̸= dist(x2,y), then

y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi
⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mwx1

x2

y̸=
z̸=

y

x1

x2

=

But what if, for some y ∈Mi ,

dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

13/15



Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj , dist(x ,z)= dist(y ,z) and

dist(z ,x)= dist(z ,y)
⇒ All nontrivial modules contain a vertex in the solution

2. The distance between vertices is either bounded by the
modular width or infinite

⇒ Allows us to bound DP steps by f (mw)
3. Given vertices x1,x2 ∈Mi , if dist(x1,y) ̸= dist(x2,y), then

y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi
⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mwx1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?

13/15



d-constant vertices

In a module M, a vertex x is d-constant if dist(w ,x) = d for
every w ∈MR (where MR is the local solution).

Definition

w

x
d

y
d

"The local solution MR does not resolve x and y !

⇒ We need to keep track of all d-constant vertices...

... but d ∈ {1, . . . ,mw,∞} so their number is bounded by mw+1 for
each factor!

⇒ We can brute-force them when combining local solutions.

14/15



d-constant vertices

In a module M, a vertex x is d-constant if dist(w ,x) = d for
every w ∈MR (where MR is the local solution).

Definition

w

x
d

y
d

"The local solution MR does not resolve x and y !

⇒ We need to keep track of all d-constant vertices...

... but d ∈ {1, . . . ,mw,∞} so their number is bounded by mw+1 for
each factor!

⇒ We can brute-force them when combining local solutions.

14/15



d-constant vertices

In a module M, a vertex x is d-constant if dist(w ,x) = d for
every w ∈MR (where MR is the local solution).

Definition

w

x
d y

d

"The local solution MR does not resolve x and y !

⇒ We need to keep track of all d-constant vertices...

... but d ∈ {1, . . . ,mw,∞} so their number is bounded by mw+1 for
each factor!

⇒ We can brute-force them when combining local solutions.

14/15



d-constant vertices

In a module M, a vertex x is d-constant if dist(w ,x) = d for
every w ∈MR (where MR is the local solution).

Definition

w

x
d y

d

"The local solution MR does not resolve x and y !

⇒ We need to keep track of all d-constant vertices...

... but d ∈ {1, . . . ,mw,∞} so their number is bounded by mw+1 for
each factor!

⇒ We can brute-force them when combining local solutions.

14/15



d-constant vertices

In a module M, a vertex x is d-constant if dist(w ,x) = d for
every w ∈MR (where MR is the local solution).

Definition

w

x
d y

d

"The local solution MR does not resolve x and y !

⇒ We need to keep track of all d-constant vertices...

... but d ∈ {1, . . . ,mw,∞} so their number is bounded by mw+1 for
each factor!

⇒ We can brute-force them when combining local solutions.
14/15



Final words
Our contribution to Metric Dimension on directed graphs
Ï NP-completeness for a very restricted class
Ï Linear-time algorithms (di-trees, orientations of unicyclic)
Ï FPT algorithm using modular decomposition

Future work
1. Orientations of/Directed outerplanar?
2. DAGs of maximum distance 2?
3. Other parameterizations? Practical implementation?

15/15



Final words
Our contribution to Metric Dimension on directed graphs
Ï NP-completeness for a very restricted class
Ï Linear-time algorithms (di-trees, orientations of unicyclic)
Ï FPT algorithm using modular decomposition

Future work
1. Orientations of/Directed outerplanar?
2. DAGs of maximum distance 2?
3. Other parameterizations? Practical implementation?

15/15



Final words
Our contribution to Metric Dimension on directed graphs
Ï NP-completeness for a very restricted class
Ï Linear-time algorithms (di-trees, orientations of unicyclic)
Ï FPT algorithm using modular decomposition

Future work
1. Orientations of/Directed outerplanar?
2. DAGs of maximum distance 2?
3. Other parameterizations? Practical implementation?

15/15


	Introduction
	Our results
	Di-trees
	Modular Width
	Conclusion

