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Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

2/15



Where does it come from?

GPS, GLONASS, Galileo,
Beidou, IRNSS, QZSS: use

of at least four satellites

How many "satellites" would
I need in a given graph?

2/15



Metric Dimension

b resolves u and v if dist(b,u) ̸= dist(b,v)
Definition

b

b′

R ⊆V (G) is a resolving set of G iff for every pair {u,v }, there is
b ∈R that resolves u and v

Resolving Set [Slater, 1975] [Harary & Melter, 1976]

MD(G)= minimum size of a resolving set of G
Metric Dimension
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Basic results
1. MD(G)= 1 ⇔ G is a path

2. MD(G)= n−1 ⇔ G is Kn
3. Trees?

The simple leg rule gives an optimal resolving set
[Slater, 1975]

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 end-
points.

Legs

G v

Simple leg rule: If v has k ≥ 2 legs, select k −1 leg endpoints.
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A difficult problem

(∗) = our results

Undirected graphs

perfect

chordal

cactus
block split interval cograph

threshold

outerplanarbipartite

planar

cactus

tree
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block split interval cograph
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di-tree (∗)

Oriented graphs

Oriented graphs

orientation of unicyclic (∗)

orientation of treeorientation of tree

bipartite
DAG

planar
DAG (∗)

orientation of planar (∗)

W[2]-complete and no better than log(n) approx in poly-time on subcubic graphs [HN13]

W[2]-complete and no better than log(n) ap-
prox in poly-time on subcubic graphs [HN13]

FPT modular-width (∗)
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Our results

Linear-time algorithms for minimum-size resolving sets of di-trees
and orientations of unicyclic graphs.

Theorem [D., Foucaud & Hakanen, 2023]

Metric Dimension is NP-complete for planar triangle-free DAGs
of maximum degree 6.

Theorem [D., Foucaud & Hakanen, 2023]

FPT algorithm for Metric Dimension parameterized by directed
modular width.

Theorem [D., Foucaud & Hakanen, 2023]
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Di-trees

From a tree, transform every edge into an arc or a 2-cycle.
Definition

Algorithm: some mandatory vertices

Ï Simple leg rule in strongly connected components
Ï Sources
Ï Resolving sets of in-twins

... but some refinement is needed!
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Refining in-twins

Vertices that share the same in-neighbour and:

Ï either are not in a nontrivial strongly connected
component;

Ï or are the endpoint of a so-called escalator.

Almost-in-twins

⇒ For each set of k almost-in-twins, take k −1 in the resolving set
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Refining legs

In a strongly connected component, a special leg is a leg that:
Ï spans from a degree ≥ 3 (in the component) vertex or a

vertex with an in-arc coming from outside the component

Ï has at least one out-arc from a vertex other than its
endpoint and no other in-arc from outside

Definition

→ Conflict between pairs!

⇒ Take the endpoint of each special leg
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The algorithm for di-trees

There is a linear-time algorithm computing a minimum-size re-
solving set of a di-tree.

Theorem [D., Foucaud & Hakanen, 2023]

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

2.1 Solve some special cases
2.2 Take the endpoint of every special leg
2.3 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!
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Parameterized complexity

There is an O(n3+m)+O(t52t2n) algorithm computing the metric
dimension of a digraph of order n, size m and directed modular
width at most t.

Theorem [D., Foucaud & Hakanen, 2023]

Algorithm
Generalized from [Belmonte et al., 2017]

1. Compute all the distances [Floyd-Warshall]
2. Obtain an optimal modular decomposition [McConnell & de

Montgolfier, 2005]
3. Start from the trivial modules, and combine them (dynamic

programming)
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Modular decompositions

A module is a set X of vertices such that every vertex outside
of X sees vertices of X in the same way.

A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.
The width of a decomposition is the max number of modules in
one factorization step.
The modular width is the min width over all decompositions.

Definition [Gallai, 1967] (and many others)

width 3mw 3
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width 3mw 3
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Properties of the modular decomposition
1. Given vertices x ,y ∈Mi and z ∈Mj ,

dist(x ,z)= dist(y ,z) and
dist(z ,x)= dist(z ,y)

⇒ All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the

modular width

or infinite
⇒ Allows us to bound DP steps by f (mw)

3. Given vertices x1,x2 ∈Mi ,

if dist(x1,y) ̸= dist(x2,y), then
y ∈Mi and one of x1,x2 will resolve y and z ̸∈Mi

⇒ Combining local solutions is "easy" in this case

x

y
z

=

≤mwx1

x2

y̸=
z̸=

y
x1

x2

=

But what if, for some y ∈Mi ,
dist(x1,y)= dist(x2,y) for every x1,x2 ∈Mi?
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d-constant vertices

In a module M, a vertex x is d-constant if dist(w ,x) = d for
every w ∈MR (where MR is the local solution).

Definition

w

x
d

y
d

"The local solution MR does not resolve x and y !

⇒ We need to keep track of all d-constant vertices...

... but d ∈ {1, . . . ,mw,∞} so their number is bounded by mw+1 for
each factor!

⇒ We can brute-force them when combining local solutions.
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Final words
Our contribution to Metric Dimension on directed graphs
Ï NP-completeness for a very restricted class
Ï Linear-time algorithms (di-trees, orientations of unicyclic)
Ï FPT algorithm using modular decomposition

Future work
1. Orientations of/Directed outerplanar?
2. DAGs of maximum distance 2?
3. Other parameterizations? Practical implementation?
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