Algorithms and hardness for Metric Dimension on directed graphs

Antoine Dailly, Florent Foucaud, Anni Hakanen
LIMOS, Clermont-Ferrand
Funded by ANR GRALMECO

WG2023
June 30, 2023

Where does it come from?
$\stackrel{\varrho}{\AA}$

Where does it come from?

Where does it come from?

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites

Where does it come from?

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites

Where does it come from?

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites

Where does it come from?

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites

Where does it come from?

GPS, GLONASS, Galileo, Beidou, IRNSS, QZSS: use of at least four satellites

How many "satellites" would I need in a given graph?

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Resolving Set [Slater, 1975] [Harary \& Melter, 1976]
$R \subseteq V(G)$ is a resolving set of G iff for every pair $\{u, v\}$, there is $b \in R$ that resolves u and v

Metric Dimension

Definition

b resolves u and v if $\operatorname{dist}(b, u) \neq \operatorname{dist}(b, v)$

Resolving Set [Slater, 1975] [Harary \& Melter, 1976]
$R \subseteq V(G)$ is a resolving set of G iff for every pair $\{u, v\}$, there is $b \in R$ that resolves u and v

Metric Dimension

$\operatorname{MD}(G)=$ minimum size of a resolving set of G

Basic results

$$
\text { 1. } \operatorname{MD}(G)=1 \Leftrightarrow G \text { is a path } 0-0-0
$$

Basic results

1. $\operatorname{MD}(G)=1 \Leftrightarrow G$ is a path

2. $\mathrm{MD}(G)=n-1 \Leftrightarrow G$ is K_{n}

Basic results

1. $\operatorname{MD}(G)=1 \Leftrightarrow G$ is a path
2. $\mathrm{MD}(G)=n-1 \Leftrightarrow G$ is K_{n}

3. Trees?

Basic results

1. $\operatorname{MD}(G)=1 \Leftrightarrow G$ is a path

2. $\mathrm{MD}(G)=n-1 \Leftrightarrow G$ is K_{n}

3. Trees?

Legs

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 endpoints.

Basic results

1. $\operatorname{MD}(G)=1 \Leftrightarrow G$ is a path

2. $\mathrm{MD}(G)=n-1 \Leftrightarrow G$ is K_{n}

3. Trees?

Legs

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 endpoints. If v has k legs, $k-1$ have ≥ 1 vertex in a resolving set.

Basic results

1. $\operatorname{MD}(G)=1 \Leftrightarrow G$ is a path
2. $\mathrm{MD}(G)=n-1 \Leftrightarrow G$ is K_{n}

Legs

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 endpoints. If v has k legs, $k-1$ have ≥ 1 vertex in a resolving set.

Simple leg rule: If v has $k \geq 2$ legs, select $k-1$ leg endpoints.

Basic results

1. $\operatorname{MD}(G)=1 \Leftrightarrow G$ is a path

2. $\mathrm{MD}(G)=n-1 \Leftrightarrow G$ is K_{n}
3. Trees? The simple leg rule gives an optimal resolving set [Slater, 1975]

Legs

Paths with degree 2 inner vertices, and degree 1 and ≥ 3 endpoints. If v has k legs, $k-1$ have ≥ 1 vertex in a resolving set.

Simple leg rule: If v has $k \geq 2$ legs, select $k-1$ leg endpoints.

A difficult problem

A difficult problem

W[2]-complete and no better than $\log (n)$ approx in poly-time on subcubic graphs [HN13]

A difficult problem

Undirected graphs

W[2]-complete and no better than $\log (n)$ approx in poly-time on subcubic graphs [HN13]

A difficult problem

W[2]-complete and no better than $\log (n)$ approx in poly-time on subcubic graphs [HN13]

A difficult problem

W[2]-complete and no better than $\log (n)$ approx in poly-time on subcubic graphs [HN13]

A difficult problem $(*)=$ our results

W[2]-complete and no better than $\log (n)$ approx in poly-time on subcubic graphs [HN13]

Our results

Theorem [D., Foucaud \& Hakanen, 2023]
Linear-time algorithms for minimum-size resolving sets of di-trees and orientations of unicyclic graphs.

Theorem [D., Foucaud \& Hakanen, 2023]
Metric Dimension is NP-complete for planar triangle-free DAGs of maximum degree 6 .

Theorem [D., Foucaud \& Hakanen, 2023]
FPT algorithm for Metric Dimension parameterized by directed modular width.

Di-trees

Definition

From a tree, transform every edge into an arc or a 2-cycle.

Di-trees

Definition

From a tree, transform every edge into an arc or a 2-cycle.

Algorithm: some mandatory vertices

Di-trees

Definition

From a tree, transform every edge into an arc or a 2-cycle.

Algorithm: some mandatory vertices

- Simple leg rule in strongly connected components

Di-trees

Definition

From a tree, transform every edge into an arc or a 2-cycle.

Algorithm: some mandatory vertices

- Simple leg rule in strongly connected components
- Sources

Di-trees

Definition

From a tree, transform every edge into an arc or a 2-cycle.

Algorithm: some mandatory vertices

- Simple leg rule in strongly connected components
- Sources
- Resolving sets of in-twins

Di-trees

Definition

From a tree, transform every edge into an arc or a 2-cycle.

Algorithm: some mandatory vertices

- Simple leg rule in strongly connected components
- Sources
- Resolving sets of in-twins

... but some refinement is needed!

Refining in-twins

Almost-in-twins
Vertices that share the same in-neighbour and:

0

Refining in-twins

Almost-in-twins

Vertices that share the same in-neighbour and:

- either are not in a nontrivial strongly connected component;

Refining in-twins

Almost-in-twins

Vertices that share the same in-neighbour and:

- either are not in a nontrivial strongly connected component;
- or are the endpoint of a so-called escalator.

Refining in-twins

Almost-in-twins

Vertices that share the same in-neighbour and:

- either are not in a nontrivial strongly connected component;
- or are the endpoint of a so-called escalator.

\Rightarrow For each set of k almost-in-twins, take $k-1$ in the resolving set

Refining legs

Definition

In a strongly connected component, a special leg is a leg that:

- spans from a degree ≥ 3 (in the component) vertex or a vertex with an in-arc coming from outside the component

Refining legs

Definition

In a strongly connected component, a special leg is a leg that:

- spans from a degree ≥ 3 (in the component) vertex or a vertex with an in-arc coming from outside the component
- has at least one out-arc from a vertex other than its endpoint and no other in-arc from outside

Refining legs

Definition

In a strongly connected component, a special leg is a leg that:

- spans from a degree ≥ 3 (in the component) vertex or a vertex with an in-arc coming from outside the component
- has at least one out-arc from a vertex other than its endpoint and no other in-arc from outside

\rightarrow Conflict between pairs!

Refining legs

Definition

In a strongly connected component, a special leg is a leg that:

- spans from a degree ≥ 3 (in the component) vertex or a vertex with an in-arc coming from outside the component
- has at least one out-arc from a vertex other than its endpoint and no other in-arc from outside

\rightarrow Conflict between pairs!
\Rightarrow Take the endpoint of each special leg

The algorithm for di-trees

Theorem [D., Foucaud \& Hakanen, 2023]
There is a linear-time algorithm computing a minimum-size resolving set of a di-tree.

Algorithm

The algorithm for di-trees

Theorem [D., Foucaud \& Hakanen, 2023]
There is a linear-time algorithm computing a minimum-size resolving set of a di-tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins

The algorithm for di-trees

Theorem [D., Foucaud \& Hakanen, 2023]
There is a linear-time algorithm computing a minimum-size resolving set of a di-tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component

The algorithm for di-trees

Theorem [D., Foucaud \& Hakanen, 2023]

There is a linear-time algorithm computing a minimum-size resolving set of a di-tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component
2.1 Solve some special cases

The algorithm for di-trees

Theorem [D., Foucaud \& Hakanen, 2023]

There is a linear-time algorithm computing a minimum-size resolving set of a di-tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component
2.1 Solve some special cases
2.2 Take the endpoint of every special leg

The algorithm for di-trees

Theorem [D., Foucaud \& Hakanen, 2023]

There is a linear-time algorithm computing a minimum-size resolving set of a di-tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component
2.1 Solve some special cases
2.2 Take the endpoint of every special leg
2.3 Resolve the remaining standard legs

The algorithm for di-trees

Theorem [D., Foucaud \& Hakanen, 2023]

There is a linear-time algorithm computing a minimum-size resolving set of a di-tree.

Algorithm

1. Take every source, resolve each set of almost-in-twins
2. For each strongly connected component
2.1 Solve some special cases
2.2 Take the endpoint of every special leg
2.3 Resolve the remaining standard legs

This gives a resolving set... which we prove is minimum-size!

Parameterized complexity

Theorem [D., Foucaud \& Hakanen, 2023]

There is an $\mathscr{O}\left(n^{3}+m\right)+\mathscr{O}\left(t^{5} 2^{t^{2}} n\right)$ algorithm computing the metric dimension of a digraph of order n, size m and directed modular width at most t.

Parameterized complexity

Theorem [D., Foucaud \& Hakanen, 2023]

There is an $\mathscr{O}\left(n^{3}+m\right)+\mathscr{O}\left(t^{5} 2^{t^{2}} n\right)$ algorithm computing the metric dimension of a digraph of order n, size m and directed modular width at most t.

Algorithm
Generalized from [Belmonte et al., 2017]

Parameterized complexity

Theorem [D., Foucaud \& Hakanen, 2023]

There is an $\mathscr{O}\left(n^{3}+m\right)+\mathscr{O}\left(t^{5} 2^{t^{2}} n\right)$ algorithm computing the metric dimension of a digraph of order n, size m and directed modular width at most t.

Algorithm
Generalized from [Belmonte et al., 2017]

1. Compute all the distances [Floyd-Warshall]
2. Obtain an optimal modular decomposition [McConnell \& de Montgolfier, 2005]

Parameterized complexity

Theorem [D., Foucaud \& Hakanen, 2023]

There is an $\mathscr{O}\left(n^{3}+m\right)+\mathscr{O}\left(t^{5} 2^{t^{2}} n\right)$ algorithm computing the metric dimension of a digraph of order n, size m and directed modular width at most t.

Algorithm
Generalized from [Belmonte et al., 2017]

1. Compute all the distances [Floyd-Warshall]
2. Obtain an optimal modular decomposition [McConnell \& de Montgolfier, 2005]
3. Start from the trivial modules, and combine them (dynamic programming)

Modular decompositions

Definition [Gallai, 1967] (and many others)
A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.

Modular decompositions

Definition [Gallai, 1967] (and many others)
A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations.

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations. The width of a decomposition is the max number of modules in one factorization step.

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations. The width of a decomposition is the max number of modules in one factorization step.

width 3

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations. The width of a decomposition is the max number of modules in one factorization step.
The modular width is the $\mathbf{m i n}$ width over all decompositions.

width 3

Modular decompositions

Definition [Gallai, 1967] (and many others)

A module is a set X of vertices such that every vertex outside of X sees vertices of X in the same way.
A factorization is the graph of the modules.
A modular decomposition is obtained by repeating factorizations. The width of a decomposition is the max number of modules in one factorization step.
The modular width is the $\mathbf{m i n}$ width over all decompositions.

mw 3

width 3

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$,

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}, \operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}, \operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}, \operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width

0
0

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}, \operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$
3. Given vertices $x_{1}, x_{2} \in M_{i}$,
```
x1O
X2O
```


Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$
3. Given vertices $x_{1}, x_{2} \in M_{i}$, if $\operatorname{dist}\left(x_{1}, y\right) \neq \operatorname{dist}\left(x_{2}, y\right)$,

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$
3. Given vertices $x_{1}, x_{2} \in M_{i}$, if $\operatorname{dist}\left(x_{1}, y\right) \neq \operatorname{dist}\left(x_{2}, y\right)$, then $y \in M_{i}$

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$
3. Given vertices $x_{1}, x_{2} \in M_{i}$, if $\operatorname{dist}\left(x_{1}, y\right) \neq \operatorname{dist}\left(x_{2}, y\right)$, then $y \in M_{i}$ and one of x_{1}, x_{2} will resolve y and $z \notin M_{i}$

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$
3. Given vertices $x_{1}, x_{2} \in M_{i}$, if $\operatorname{dist}\left(x_{1}, y\right) \neq \operatorname{dist}\left(x_{2}, y\right)$, then $y \in M_{i}$ and one of x_{1}, x_{2} will resolve y and $z \notin M_{i}$
\Rightarrow Combining local solutions is "easy" in this case

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$
3. Given vertices $x_{1}, x_{2} \in M_{i}$, if $\operatorname{dist}\left(x_{1}, y\right) \neq \operatorname{dist}\left(x_{2}, y\right)$, then $y \in M_{i}$ and one of x_{1}, x_{2} will resolve y and $z \notin M_{i}$
\Rightarrow Combining local solutions is "easy" in this case

But what if, for some $y \in M_{i}$,

Properties of the modular decomposition

1. Given vertices $x, y \in M_{i}$ and $z \in M_{j}$, $\operatorname{dist}(x, z)=\operatorname{dist}(y, z)$ and $\operatorname{dist}(z, x)=\operatorname{dist}(z, y)$
\Rightarrow All nontrivial modules contain a vertex in the solution
2. The distance between vertices is either bounded by the modular width or infinite
\Rightarrow Allows us to bound DP steps by $f(\mathrm{mw})$
3. Given vertices $x_{1}, x_{2} \in M_{i}$, if $\operatorname{dist}\left(x_{1}, y\right) \neq \operatorname{dist}\left(x_{2}, y\right)$, then $y \in M_{i}$ and one of x_{1}, x_{2} will resolve y and $z \notin M_{i}$
\Rightarrow Combining local solutions is "easy" in this case

But what if, for some $y \in M_{i}$, $\operatorname{dist}\left(x_{1}, y\right)=\operatorname{dist}\left(x_{2}, y\right)$ for every $x_{1}, x_{2} \in M_{i}$?

d-constant vertices

Definition

In a module M, a vertex x is d-constant if $\operatorname{dist}(w, x)=d$ for every $w \in M_{R}$ (where M_{R} is the local solution).

d-constant vertices

Definition

In a module M, a vertex x is d-constant if $\operatorname{dist}(w, x)=d$ for every $w \in M_{R}$ (where M_{R} is the local solution).

d-constant vertices

Definition

In a module M, a vertex x is d-constant if $\operatorname{dist}(w, x)=d$ for every $w \in M_{R}$ (where M_{R} is the local solution).

© The local solution M_{R} does not resolve x and y !

d-constant vertices

Definition

In a module M, a vertex x is d-constant if $\operatorname{dist}(w, x)=d$ for every $w \in M_{R}$ (where M_{R} is the local solution).

\triangle The local solution M_{R} does not resolve x and y !
\Rightarrow We need to keep track of all d-constant vertices...

d-constant vertices

Definition

In a module M, a vertex x is d-constant if $\operatorname{dist}(w, x)=d$ for every $w \in M_{R}$ (where M_{R} is the local solution).

© The local solution M_{R} does not resolve x and y !
\Rightarrow We need to keep track of all d-constant vertices...
... but $d \in\{1, \ldots, \mathrm{mw}, \infty\}$ so their number is bounded by $\mathrm{mw}+1$ for each factor!
\Rightarrow We can brute-force them when combining local solutions.

Final words

Our contribution to Metric Dimension on directed graphs

- NP-completeness for a very restricted class
- Linear-time algorithms (di-trees, orientations of unicyclic)
- FPT algorithm using modular decomposition

Final words

Our contribution to Metric Dimension on directed graphs

- NP-completeness for a very restricted class
- Linear-time algorithms (di-trees, orientations of unicyclic)
- FPT algorithm using modular decomposition

Future work

1. Orientations of/Directed outerplanar?
2. DAGs of maximum distance 2?
3. Other parameterizations? Practical implementation?

Final words

Our contribution to Metric Dimension on directed graphs

- NP-completeness for a very restricted class
- Linear-time algorithms (di-trees, orientations of unicyclic)
- FPT algorithm using modular decomposition

Future work

1. Orientations of/Directed outerplanar?
2. DAGs of maximum distance 2?
3. Other parameterizations? Practical implementation?

