Rooks and $\operatorname{ARC-KAYLES}$

Antoine Dailly¹, Valentin Gledel¹, Marc Heinrich¹

¹Université Lyon 1, LIRIS, Lyon

This work is part of the ANR GAG (Graphs and Games). Thanks to Nicolas Bousquet for his help.

Seminario Preguntón, December 13, 2017

Definition

1. Two-player games

- 1. Two-player games
- 2. No chance

- 1. Two-player games
- 2. No chance
- 3. Perfect information

- 1. Two-player games
- 2. No chance
- 3. Perfect information
- 4. Finite games, no draw

- 1. Two-player games
- 2. No chance
- 3. Perfect information
- 4. Finite games, no draw
- 5. The last move alone determines the winner

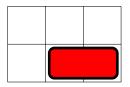
Relaxations

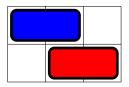
- 1. Two-player games \rightarrow Multiplayer Theory
- 2. No chance \rightarrow Economical Games
- 3. Perfect information \rightarrow Economical Games
- 4. Finite games, no draw \rightarrow Loopy Games
- 5. The last move alone determines the winner \rightarrow Scoring Games, several graph games (coloring game, domination game, ...)

Relaxations

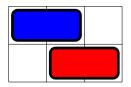
- 1. Two-player games \rightarrow Multiplayer Theory
- 2. No chance \rightarrow Economical Games
- 3. Perfect information \rightarrow Economical Games
- 4. Finite games, no draw \rightarrow Loopy Games
- 5. The last move alone determines the winner \rightarrow Scoring Games, several graph games (coloring game, domination game, ...)

 \rightarrow We will talk about pure Combinatorial Games. Note: Both players play perfectly!

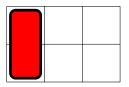


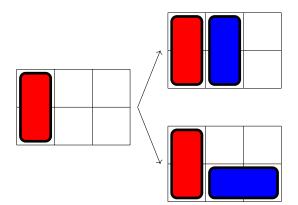


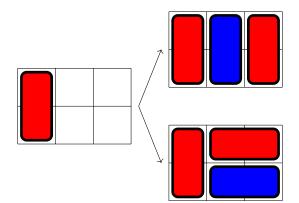
 ${\rm CRAM}:$ The players place dominos on a grid. The player who plays the last domino wins.



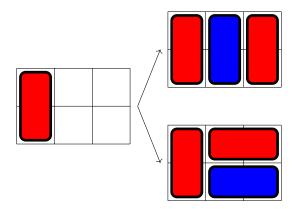
 \Rightarrow Second player wins.







 ${\rm CRAM}:$ The players place dominos on a grid. The player who plays the last domino wins.



 \Rightarrow First player wins.

Impartial and partizan

A game is impartial \Leftrightarrow Both players have the same moves. Otherwise, it is partizan.

Impartial and partizan

A game is impartial \Leftrightarrow Both players have the same moves. Otherwise, it is partizan.

 \rightarrow We will study impartial games

Impartial and partizan

A game is impartial \Leftrightarrow Both players have the same moves. Otherwise, it is partizan.

 \rightarrow We will study impartial games

Outcome

A game is $\mathcal{N} \Leftrightarrow$ The first player has a winning strategy. Otherwise, it is \mathcal{P} .

Impartial and partizan

A game is impartial \Leftrightarrow Both players have the same moves. Otherwise, it is partizan.

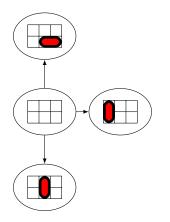
 \rightarrow We will study impartial games

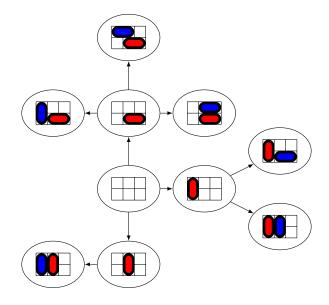
Outcome

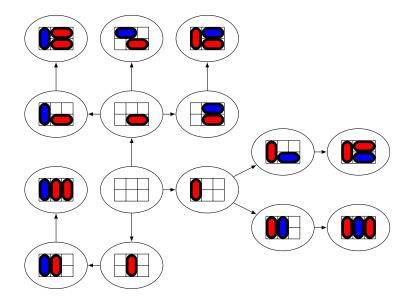
A game is $\mathcal{N} \Leftrightarrow$ The first player has a winning strategy. Otherwise, it is \mathcal{P} .

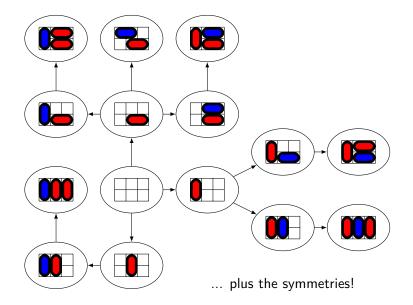
Problematics of Combinatorial Games

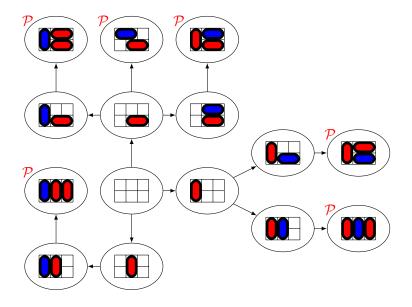
- 1. Is a given game \mathcal{N} or \mathcal{P} ?
- 2. What is the winning strategy?

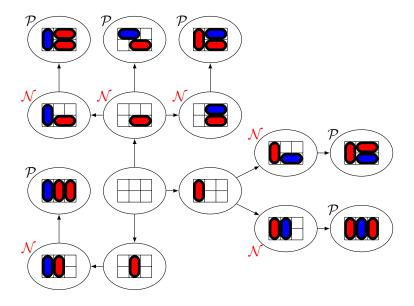


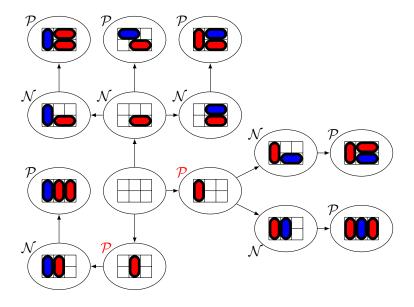


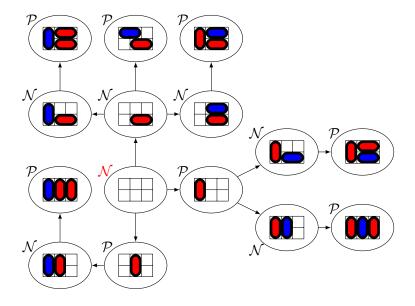












Complete and finite

- Complete and finite
- ... but exponential-time!

- Complete and finite
- ... but exponential-time!

\Rightarrow A more efficient method to study games

NIM

Nim

Studied in 1901 by Charles Bouton

Studied in 1901 by Charles Bouton

I

Played on heaps of counters

| | | | | | | | | | | |

- Studied in 1901 by Charles Bouton
- Played on heaps of counters
- Players remove counters from one heap

- Studied in 1901 by Charles Bouton
- Played on heaps of counters
- Players remove counters from one heap

- Studied in 1901 by Charles Bouton
- Played on heaps of counters
- Players remove counters from one heap

- Studied in 1901 by Charles Bouton
- Played on heaps of counters
- Players remove counters from one heap
- Whoever takes the last counter(s) wins

- Studied in 1901 by Charles Bouton
- Played on heaps of counters
- Players remove counters from one heap
- Whoever takes the last counter(s) wins

- Studied in 1901 by Charles Bouton
- Played on heaps of counters
- Players remove counters from one heap
- Whoever takes the last counter(s) wins

- Studied in 1901 by Charles Bouton
- Played on heaps of counters
- Players remove counters from one heap
- Whoever takes the last counter(s) wins

- Studied in 1901 by Charles Bouton
- Played on heaps of counters
- Players remove counters from one heap
- Whoever takes the last counter(s) wins

- Studied in 1901 by Charles Bouton
- Played on heaps of counters
- Players remove counters from one heap
- Whoever takes the last counter(s) wins

 \Rightarrow Here, the first player won

- Studied in 1901 by Charles Bouton
- Played on heaps of counters
- Players remove counters from one heap
- Whoever takes the last counter(s) wins

```
\Rightarrow \text{Here, the first player won} \\\Rightarrow \text{ Is there a strategy?}
```

Theorem Let (a_1, \ldots, a_n) be a NIM-position. It is $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.

Theorem Let (a_1, \ldots, a_n) be a NIM-position. It is $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.

| 1 ||||3 |||||||7

Theorem Let (a_1, \ldots, a_n) be a NIM-position. It is $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.

| 1 = 001| 0 = 011| 0 = 011| 0 = 011| 0 = 011| 0 = 011| 0 = 011

Theorem Let (a_1, \ldots, a_n) be a NIM-position. It is $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.

Theorem Let (a_1, \ldots, a_n) be a NIM-position. It is $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.

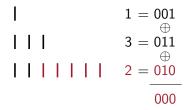
$$\begin{vmatrix} & & 1 = 001 \\ \oplus \\ & & 011 \\ & & 011 \\ & & 011 \\ & & 011 \\ & & 011 \\ \hline \\ & & 101 \\ \hline \\ & & 101 \\ \end{vmatrix}$$

Proof (by induction)

• If $a_1 \oplus \ldots \oplus a_n \neq 0$, then move to such a position.

${\hbox{\rm Solving N{\rm IM}$}}$

Theorem Let (a_1, \ldots, a_n) be a NIM-position. It is $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.



Proof (by induction)

• If $a_1 \oplus \ldots \oplus a_n \neq 0$, then move to such a position.

${\hbox{\rm Solving N{\rm IM}$}}$

Theorem Let (a_1, \ldots, a_n) be a NIM-position. It is $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.

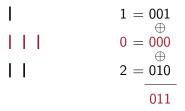
||||

 $1 = 001 \\ \oplus \\ 3 = 011 \\ \oplus \\ 2 = 010 \\ \hline 000$

- If $a_1 \oplus \ldots \oplus a_n \neq 0$, then move to such a position.
- Otherwise, then no move leaves such a position.

${\hbox{\rm Solving N{\rm IM}$}}$

Theorem Let (a_1, \ldots, a_n) be a NIM-position. It is $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.



- If $a_1 \oplus \ldots \oplus a_n \neq 0$, then move to such a position.
- Otherwise, then no move leaves such a position.

${\sf Solving}\,\, N{\rm IM}$

Theorem Let (a_1, \ldots, a_n) be a NIM-position. It is $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$.

1 = 001 \oplus 2 = 010 011

- If $a_1 \oplus \ldots \oplus a_n \neq 0$, then move to such a position.
- Otherwise, then no move leaves such a position.
- ▶ When two heaps are left, the result is trivial.

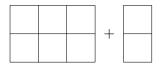
${\sf Solving}\,\, N{\rm IM}$

Theorem Let (a_1, \ldots, a_n) be a NIM-position. It is $\mathcal{P} \Leftrightarrow a_1 \oplus \ldots \oplus a_n = 0$. $| \qquad 1 = 001$ \oplus 1 = 001000

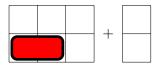
- If $a_1 \oplus \ldots \oplus a_n \neq 0$, then move to such a position.
- Otherwise, then no move leaves such a position.
- ▶ When two heaps are left, the result is trivial.

Sum of games

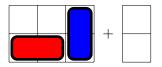
Sum of games



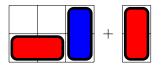
Sum of games



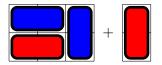
Sum of games



Sum of games

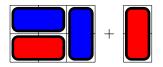


Sum of games



Sum of games

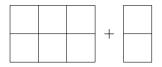
On G + H, the players play either on G or on H. When G (resp. H) is over, they play on H (resp. G). The player who plays the last move wins.



Why summing games?

Sum of games

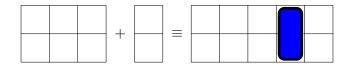
On G + H, the players play either on G or on H. When G (resp. H) is over, they play on H (resp. G). The player who plays the last move wins.



Why summing games?

Sum of games

On G + H, the players play either on G or on H. When G (resp. H) is over, they play on H (resp. G). The player who plays the last move wins.



Why summing games?

Theorem

Theorem

If G is \mathcal{P} , then G + H has the same outcome than H.

Theorem If G is \mathcal{P} , then G + H has the same outcome than H.

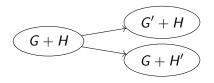
Proof by induction

▶ If H is \mathcal{P} :

Theorem If G is \mathcal{P} , then G + H has the same outcome than H.

Proof by induction

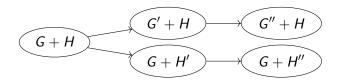
• If H is \mathcal{P} :



Theorem If G is \mathcal{P} , then G + H has the same outcome than H.

Proof by induction

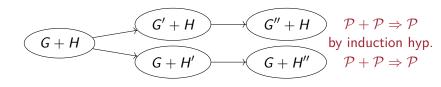
• If H is \mathcal{P} :



Theorem If G is \mathcal{P} , then G + H has the same outcome than H.

Proof by induction

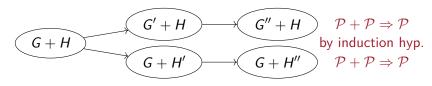
• If H is \mathcal{P} :



Theorem If G is \mathcal{P} , then G + H has the same outcome than H.

Proof by induction

• If H is \mathcal{P} :

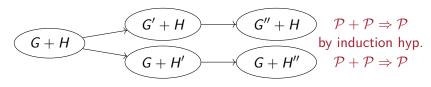


• If H is \mathcal{N} :

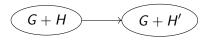
Theorem If G is \mathcal{P} , then G + H has the same outcome than H.

Proof by induction

• If H is \mathcal{P} :



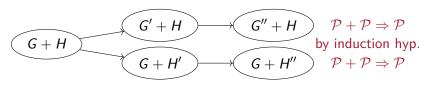
• If H is \mathcal{N} :



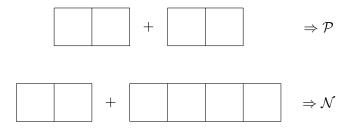
Theorem If G is \mathcal{P} , then G + H has the same outcome than H.

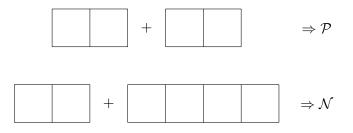
Proof by induction

• If H is \mathcal{P} :



▶ If H is \mathcal{N} :





 \Rightarrow We need to define equivalence classes for games

Equivalence of games

 $G \equiv H \Leftrightarrow G + H$ is \mathcal{P} .

- Equivalence of games
- $G \equiv H \Leftrightarrow G + H$ is \mathcal{P} .

Grundy value

Mapping the equivalence classes to nonnegative integers.

Equivalence of games

 $G \equiv H \Leftrightarrow G + H$ is \mathcal{P} .

Grundy value

Mapping the equivalence classes to nonnegative integers.

•
$$\mathcal{G}(\mathbf{G}) = 0 \Leftrightarrow \mathbf{G} \text{ is } \mathcal{P}.$$

Equivalence of games

 $G \equiv H \Leftrightarrow G + H$ is \mathcal{P} .

Grundy value

Mapping the equivalence classes to nonnegative integers.

•
$$\mathcal{G}(\mathbf{G}) = 0 \Leftrightarrow \mathbf{G} \text{ is } \mathcal{P}.$$

- Equivalence of games
- $G \equiv H \Leftrightarrow G + H$ is \mathcal{P} .

Grundy value

Mapping the equivalence classes to nonnegative integers.

- $\mathcal{G}(G) = 0 \Leftrightarrow G \text{ is } \mathcal{P}.$
- $\mathcal{G}(G)$ is the mex of the Grundy values of its options.

Equivalence of games

 $G \equiv H \Leftrightarrow G + H$ is \mathcal{P} .

Grundy value

Mapping the equivalence classes to nonnegative integers.

•
$$\mathcal{G}(\mathbf{G}) = 0 \Leftrightarrow \mathbf{G} \text{ is } \mathcal{P}.$$

Equivalence of games

 $G \equiv H \Leftrightarrow G + H$ is \mathcal{P} .

Grundy value

Mapping the equivalence classes to nonnegative integers.

•
$$\mathcal{G}(\mathbf{G}) = 0 \Leftrightarrow \mathbf{G} \text{ is } \mathcal{P}.$$

$$\mathcal{G} = 1$$
 \longrightarrow $\mathcal{G} = 0$

Equivalence of games

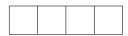
 $G \equiv H \Leftrightarrow G + H$ is \mathcal{P} .

Grundy value

Mapping the equivalence classes to nonnegative integers.

•
$$\mathcal{G}(\mathbf{G}) = 0 \Leftrightarrow \mathbf{G} \text{ is } \mathcal{P}.$$

$$\mathcal{G} = 1$$
 \longrightarrow $\mathcal{G} = 0$



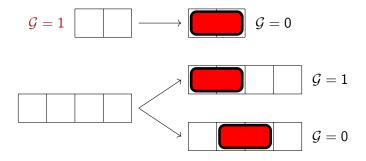
Equivalence of games

 $G \equiv H \Leftrightarrow G + H$ is \mathcal{P} .

Grundy value

Mapping the equivalence classes to nonnegative integers.

•
$$\mathcal{G}(\mathbf{G}) = 0 \Leftrightarrow \mathbf{G} \text{ is } \mathcal{P}.$$



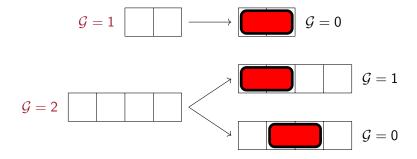
Equivalence of games

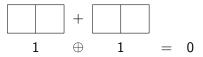
 $G \equiv H \Leftrightarrow G + H$ is \mathcal{P} .

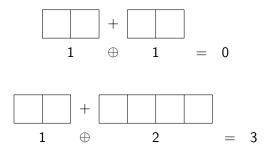
Grundy value

Mapping the equivalence classes to nonnegative integers.

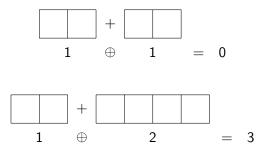
•
$$\mathcal{G}(\mathbf{G}) = 0 \Leftrightarrow \mathbf{G} \text{ is } \mathcal{P}.$$







Theorem (Sprague 1935, Grundy 1939) $\mathcal{G}(G + H) = \mathcal{G}(G) \oplus \mathcal{G}(H)$



Interpretation

Every impartial game is equivalent to a $\ensuremath{\mathrm{NIM}}$ heap.

The queens problem (Bezzel, 1848)

How many queens can one place on a chessboard without them attacking each other?

The queens problem (Bezzel, 1848)

How many queens can one place on a chessboard without them attacking each other?

The queens game (Noon and Van Brummelen, 2006)

Two players alternate placing queens on a chessboard without attacking an already placed queen. The player who places the last queen wins.

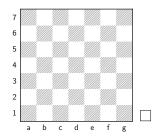
The queens problem (Bezzel, 1848)

How many queens can one place on a chessboard without them attacking each other?

The queens game (Noon and Van Brummelen, 2006)

Two players alternate placing queens on a chessboard without attacking an already placed queen. The player who places the last queen wins.

 \rightarrow Solved on odd square chessboards.



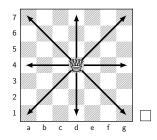
The queens problem (Bezzel, 1848)

How many queens can one place on a chessboard without them attacking each other?

The queens game (Noon and Van Brummelen, 2006)

Two players alternate placing queens on a chessboard without attacking an already placed queen. The player who places the last queen wins.

 \rightarrow Solved on odd square chessboards.



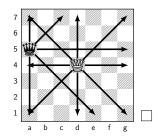
The queens problem (Bezzel, 1848)

How many queens can one place on a chessboard without them attacking each other?

The queens game (Noon and Van Brummelen, 2006)

Two players alternate placing queens on a chessboard without attacking an already placed queen. The player who places the last queen wins.

 \rightarrow Solved on odd square chessboards.



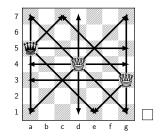
The queens problem (Bezzel, 1848)

How many queens can one place on a chessboard without them attacking each other?

The queens game (Noon and Van Brummelen, 2006)

Two players alternate placing queens on a chessboard without attacking an already placed queen. The player who places the last queen wins.

 \rightarrow Solved on odd square chessboards. $\Rightarrow \mathcal{N}$ by symmetry



The Rooks game

The rooks game

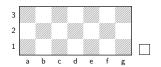
Two players alternate placing rooks on a chessboard without attacking an already placed rook. The player who places the last rook wins.

The Rooks game

The rooks game

Two players alternate placing rooks on a chessboard without attacking an already placed rook. The player who places the last rook wins.

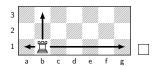
On rectangular chessboards: parity.



The rooks game

Two players alternate placing rooks on a chessboard without attacking an already placed rook. The player who places the last rook wins.

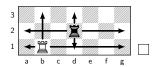
On rectangular chessboards: parity.



The rooks game

Two players alternate placing rooks on a chessboard without attacking an already placed rook. The player who places the last rook wins.

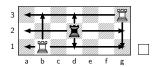
On rectangular chessboards: parity.



The rooks game

Two players alternate placing rooks on a chessboard without attacking an already placed rook. The player who places the last rook wins.

On rectangular chessboards: parity.



The rooks game

Two players alternate placing rooks on a chessboard without attacking an already placed rook. The player who places the last rook wins.

On rectangular chessboards: parity.

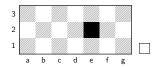
The rooks game on a holed chessboard

The rooks game

Two players alternate placing rooks on a chessboard without attacking an already placed rook. The player who places the last rook wins.

On rectangular chessboards: parity.

The rooks game on a holed chessboard

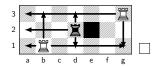


The rooks game

Two players alternate placing rooks on a chessboard without attacking an already placed rook. The player who places the last rook wins.

On rectangular chessboards: parity.

The rooks game on a holed chessboard

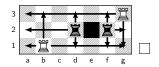


The rooks game

Two players alternate placing rooks on a chessboard without attacking an already placed rook. The player who places the last rook wins.

On rectangular chessboards: parity.

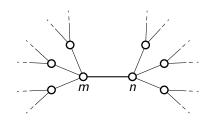
The rooks game on a holed chessboard



A model for the rooks game: WEIGHTED ARC-KAYLES

WEIGHTED ARC-KAYLES (or WAK)

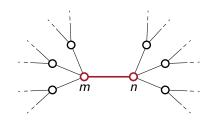
- ▶ Played on a weighted graph $G = (V, E, \omega)$ with $\omega : V \rightarrow \mathbb{N}$.
- The players alternate selecting edges.
- The weight of both endpoints is decreased by 1.
- Vertices with weight zero are removed.
- When there are no edges left, the game ends.



A model for the rooks game: WEIGHTED ARC-KAYLES

WEIGHTED ARC-KAYLES (or WAK)

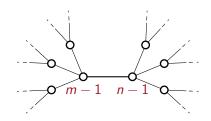
- ▶ Played on a weighted graph $G = (V, E, \omega)$ with $\omega : V \rightarrow \mathbb{N}$.
- The players alternate selecting edges.
- The weight of both endpoints is decreased by 1.
- Vertices with weight zero are removed.
- When there are no edges left, the game ends.

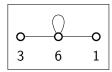


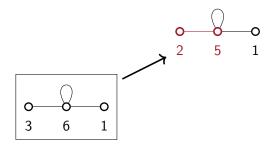
A model for the rooks game: WEIGHTED ARC-KAYLES

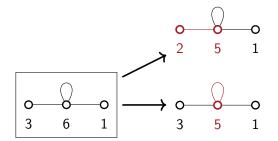
WEIGHTED ARC-KAYLES (or WAK)

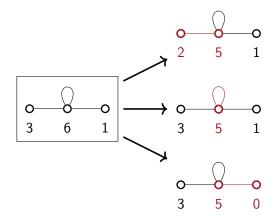
- ▶ Played on a weighted graph $G = (V, E, \omega)$ with $\omega : V \rightarrow \mathbb{N}$.
- The players alternate selecting edges.
- The weight of both endpoints is decreased by 1.
- Vertices with weight zero are removed.
- When there are no edges left, the game ends.

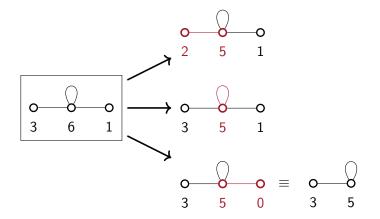


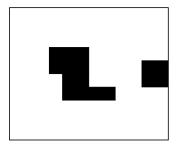


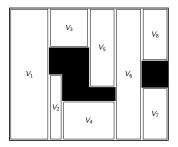


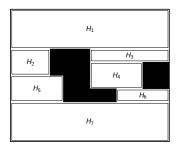


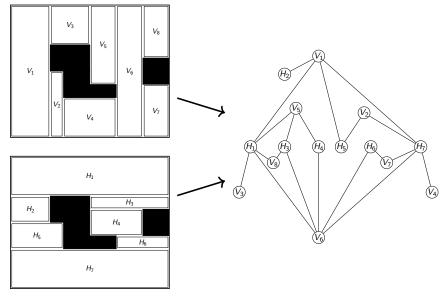


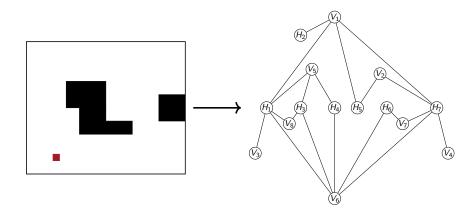


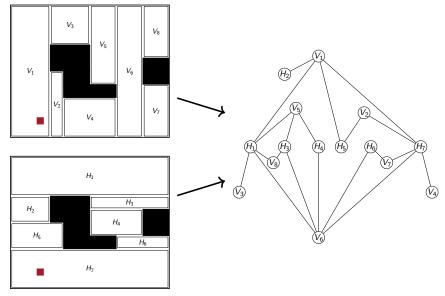


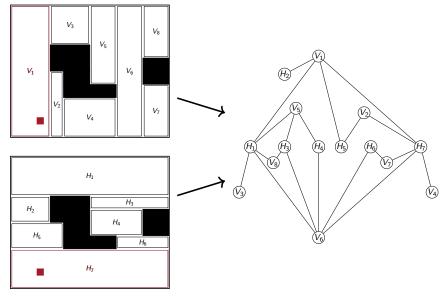


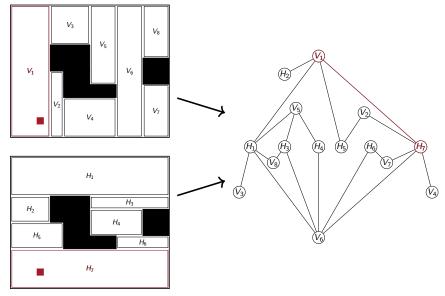


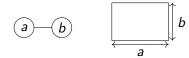


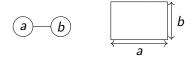






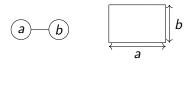




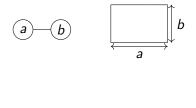


 $\mathcal{G} = min(a, b) \mod 2$

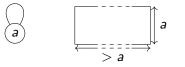
 $\mathcal{G} = min(a, b) \mod 2$



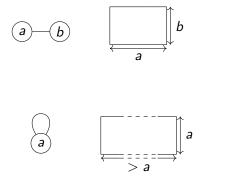
$$\mathcal{G} = min(a, b) \mod 2$$



$$\mathcal{G} = min(a, b) \mod 2$$

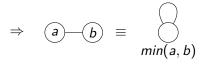


$$\mathcal{G} = a \mod 2$$



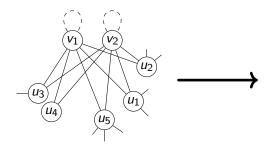
 $\mathcal{G} = min(a, b) \mod 2$

$$\mathcal{G} = a \mod 2$$

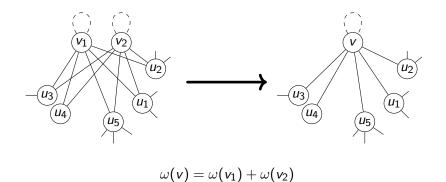


Twin vertices lemma

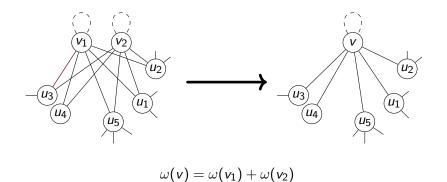
If two vertices are exact false twins (including loop edges),



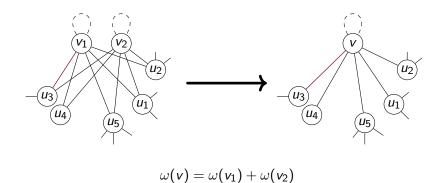
Twin vertices lemma



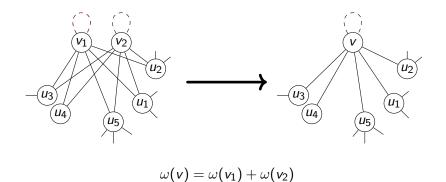
Twin vertices lemma



Twin vertices lemma

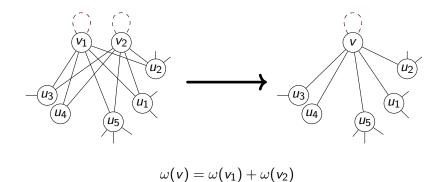


Twin vertices lemma



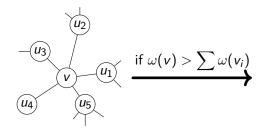
Twin vertices lemma

If two vertices are exact false twins (including loop edges), then they can be fused together.



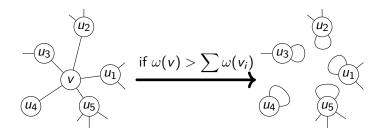
Heavy vertex lemma

If a vertex without loop has a weight greater than the sum of its neighbour's weights,



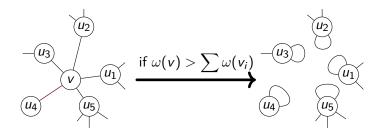
Heavy vertex lemma

If a vertex without loop has a weight greater than the sum of its neighbour's weights, then it can be removed and loops added to its neighbours.



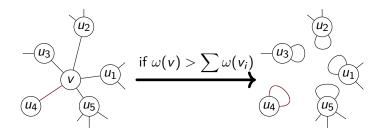
Heavy vertex lemma

If a vertex without loop has a weight greater than the sum of its neighbour's weights, then it can be removed and loops added to its neighbours.



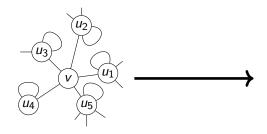
Heavy vertex lemma

If a vertex without loop has a weight greater than the sum of its neighbour's weights, then it can be removed and loops added to its neighbours.



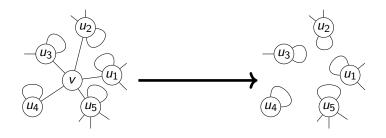
Useless vertex lemma

If all the neighbours of a vertex without loop have a loop,



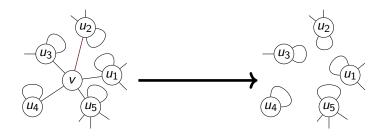
Useless vertex lemma

If all the neighbours of a vertex without loop have a loop, then it can be removed.



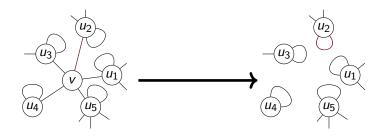
Useless vertex lemma

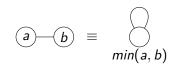
If all the neighbours of a vertex without loop have a loop, then it can be removed.

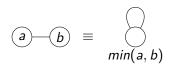


Useless vertex lemma

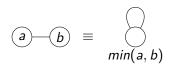
If all the neighbours of a vertex without loop have a loop, then it can be removed.







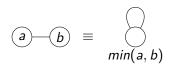
\Rightarrow Application of the Heavy vertex lemma



\Rightarrow Application of the Heavy vertex lemma

Canonical form

A graph is canonical if it has no false twin, no heavy vertex and no useless vertex.



\Rightarrow Application of the Heavy vertex lemma

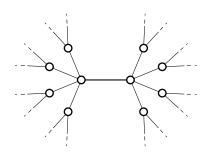
Canonical form

A graph is canonical if it has no false twin, no heavy vertex and no useless vertex.

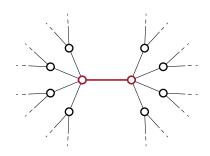
Proposition

If G is a graph and H its canonical form after application of the reduction lemmas, then $\mathcal{G}(G) = \mathcal{G}(H)$.

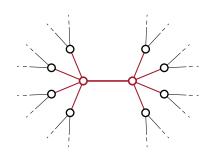
- ► This game is played on a graph G = (V, E).
- The players alternate selecting edges.
- Its endpoints are deleted.
- When there are no edges left, the game ends.



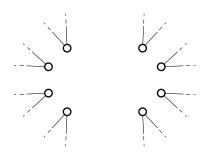
- ► This game is played on a graph G = (V, E).
- The players alternate selecting edges.
- Its endpoints are deleted.
- When there are no edges left, the game ends.



- ► This game is played on a graph G = (V, E).
- The players alternate selecting edges.
- Its endpoints are deleted.
- When there are no edges left, the game ends.

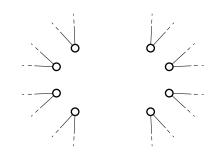


- ► This game is played on a graph G = (V, E).
- The players alternate selecting edges.
- Its endpoints are deleted.
- When there are no edges left, the game ends.



ARC-KAYLES (Schaefer, 1978)

- ► This game is played on a graph G = (V, E).
- The players alternate selecting edges.
- Its endpoints are deleted.
- When there are no edges left, the game ends.



 \Rightarrow Arc-Kayles is WAK with $\omega(u) = 1$ for all vertex u

$\operatorname{ARC-KAYLES:}$ a history

▶ 1976: introduction (Schaeffer)

- ▶ 1976: introduction (Schaeffer)
- ▶ 1956: solved on paths (Guy and Smith)

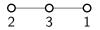
- ▶ 1976: introduction (Schaeffer)
- ▶ 1956: solved on paths (Guy and Smith)
- 2014: FPT complexity (Lampis and Mitsou)

- ▶ 1976: introduction (Schaeffer)
- ▶ 1956: solved on paths (Guy and Smith)
- ▶ 2014: FPT complexity (Lampis and Mitsou)
- 2016: solved on cycles, wheels and stars with 3 paths (Huggan and Stevens)

- ▶ 1976: introduction (Schaeffer)
- ▶ 1956: solved on paths (Guy and Smith)
- ▶ 2014: FPT complexity (Lampis and Mitsou)
- 2016: solved on cycles, wheels and stars with 3 paths (Huggan and Stevens)
 - \rightarrow Links with many other games (CRAM, octal games \dots)

WEIGHTED ARC-KAYLES

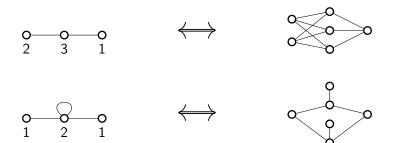
WEIGHTED ARC-KAYLES

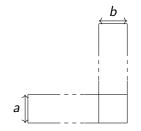


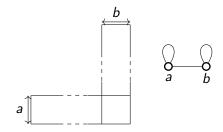
WEIGHTED ARC-KAYLES

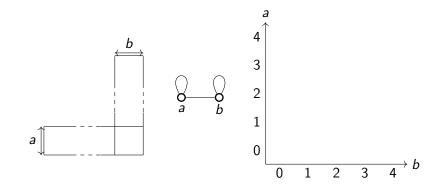
WEIGHTED ARC-KAYLES

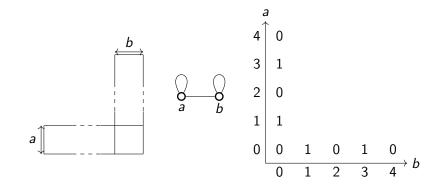
WEIGHTED ARC-KAYLES

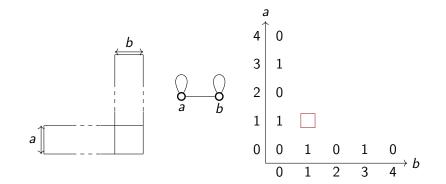


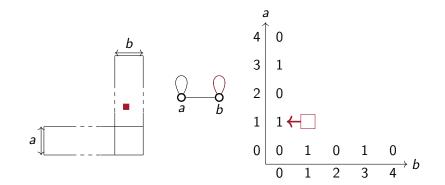


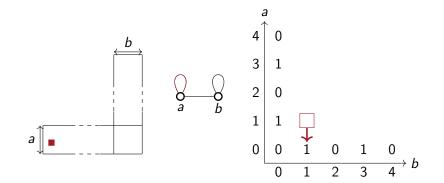


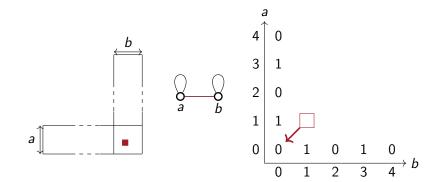


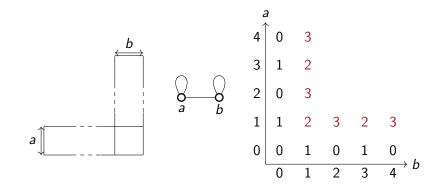


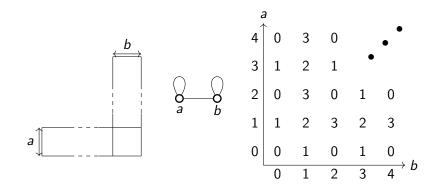


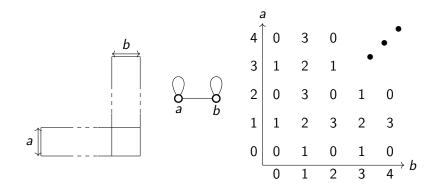








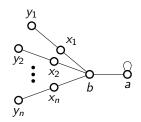




 $\mathcal{P} \Leftrightarrow a \text{ and } b \text{ even}$

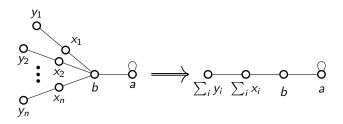
Theorem

Let $x_i > y_i$



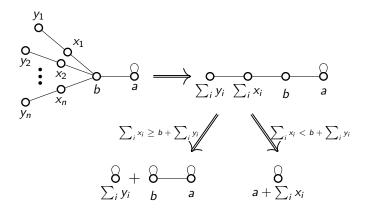
Theorem

Let $x_i > y_i$



Theorem

Let $x_i > y_i$

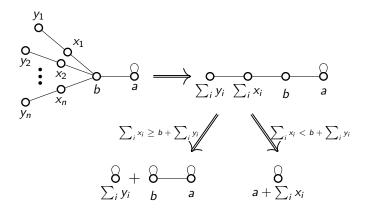


by the heavy vertex lemma

by a technical lemma or b is heavy and Y useless

Theorem

Let $x_i > y_i$

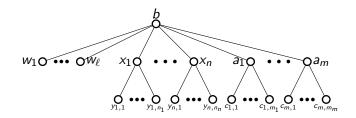


by the heavy vertex lemma

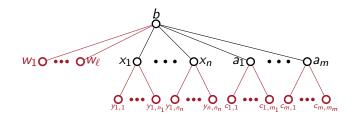
by a technical lemma or b is heavy and Y useless

Same outcome, not equivalence!

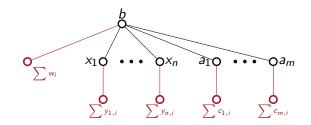
Theorem



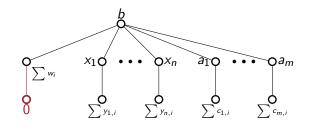
Theorem



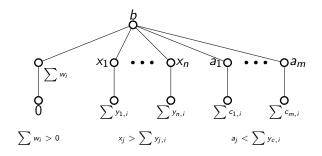
Theorem



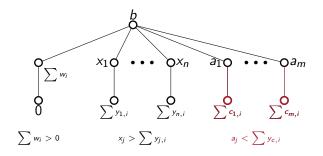
Theorem



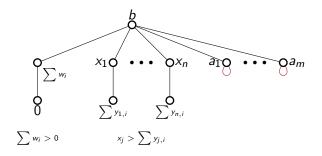
Theorem



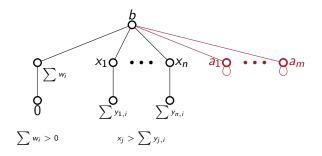
Theorem



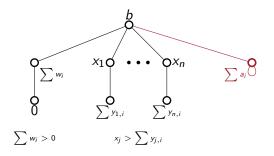
Theorem



Theorem

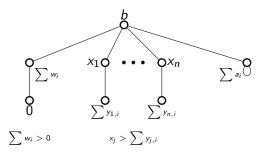


Theorem



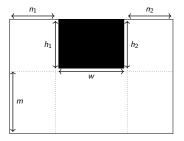
Theorem

There is a polynomial-time algorithm computing the outcome of a tree of depth at most 2.

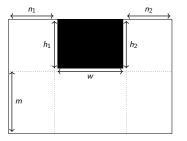


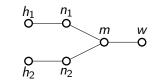
ightarrow Now we can apply the previous theorem and find the outcome

Trees of depth at most 2: implication



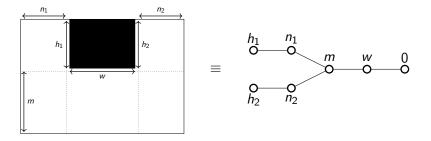
Trees of depth at most 2: implication





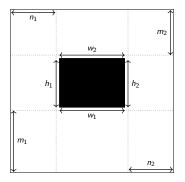
 \equiv

Trees of depth at most 2: implication

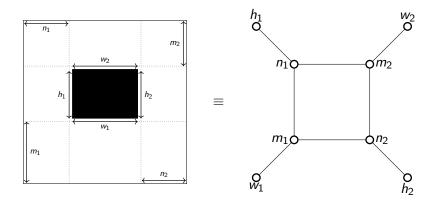


 \rightarrow Tree of depth 2

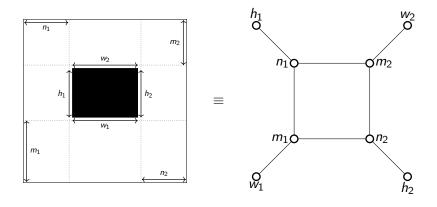
Other chessboards?



Other chessboards?



Other chessboards?



 \rightarrow Hard...

Theorem The Grundy values for WAK are unbounded.

Theorem

The Grundy values for $\mathrm{W\!AK}$ are unbounded.

Proof (by induction)

Construct a sequence G_1, G_2, \ldots such that:

- $\mathcal{G}(G_i) \neq \mathcal{G}(G_j)$ for j < i
- ► A winning move is by removing a certain vertex *u_i*
- Every vertex has weight 1

Theorem

The Grundy values for WAK are unbounded.

Proof (by induction)

Construct a sequence G_1, G_2, \ldots such that:

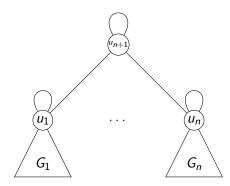
- $\mathcal{G}(G_i) \neq \mathcal{G}(G_j)$ for j < i
- ► A winning move is by removing a certain vertex *u_i*
- Every vertex has weight 1

$$G_1 = \bigcup_{u_1}$$

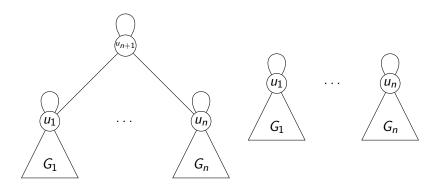
- $\mathcal{G}(G_n) \neq \mathcal{G}(G_j)$ for j < n+1
- A winning move is by removing a certain vertex u_{n+1}
- Every vertex has weight 1

- $\mathcal{G}(G_n) \neq \mathcal{G}(G_j)$ for j < n+1
- A winning move is by removing a certain vertex u_{n+1}
- Every vertex has weight 1

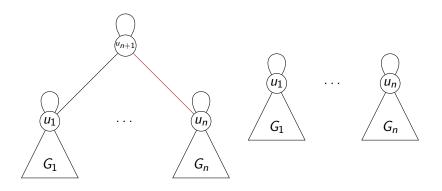
- $\mathcal{G}(G_n) \neq \mathcal{G}(G_j)$ for j < n+1
- A winning move is by removing a certain vertex u_{n+1}
- Every vertex has weight 1



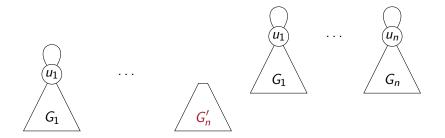
- $\mathcal{G}(G_n) \neq \mathcal{G}(G_j)$ for j < n+1
- A winning move is by removing a certain vertex u_{n+1}
- \blacktriangleright Every vertex has weight 1 \checkmark



- $\mathcal{G}(G_n) \neq \mathcal{G}(G_j)$ for j < n+1
- A winning move is by removing a certain vertex u_{n+1}
- \blacktriangleright Every vertex has weight 1 \checkmark

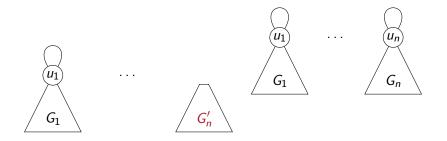


- $\mathcal{G}(G_n) \neq \mathcal{G}(G_j)$ for j < n+1
- A winning move is by removing a certain vertex u_{n+1}
- \blacktriangleright Every vertex has weight 1 🗸



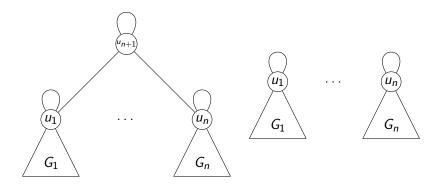
 $\forall i, \mathcal{G}(G'_i) = 0$ by induction hypothesis,

- $\mathcal{G}(G_n) \neq \mathcal{G}(G_j)$ for j < n+1
- A winning move is by removing a certain vertex u_{n+1}
- \blacktriangleright Every vertex has weight 1 🗸

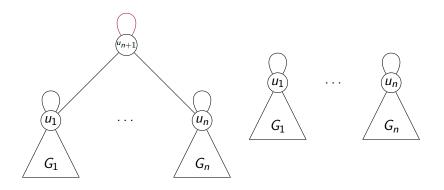


 $\forall i, \mathcal{G}(G'_i) = 0$ by induction hypothesis, this graph has $\mathcal{G} = \mathcal{G}(G_i)$.

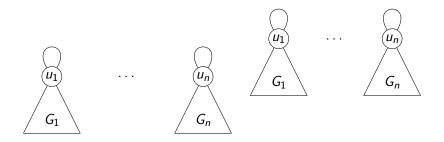
- $\mathcal{G}(G_n) \neq \mathcal{G}(G_j)$ for j < n+1 🗸
- A winning move is by removing a certain vertex u_{n+1}
- \blacktriangleright Every vertex has weight 1 🗸



- $\mathcal{G}(G_n) \neq \mathcal{G}(G_j)$ for j < n+1 🗸
- A winning move is by removing a certain vertex u_{n+1}
- \blacktriangleright Every vertex has weight 1 🗸

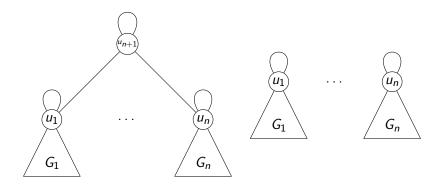


- $\mathcal{G}(G_n) \neq \mathcal{G}(G_j)$ for j < n+1 🗸
- A winning move is by removing a certain vertex u_{n+1}
- \blacktriangleright Every vertex has weight 1 🗸



This graph has $\mathcal{G} = 0$.

- $\mathcal{G}(G_n) \neq \mathcal{G}(G_j)$ for j < n+1 🗸
- ▶ A winning move is by removing a certain vertex u_{n+1} ✓
- \blacktriangleright Every vertex has weight 1 \checkmark



 \Rightarrow Infinite sequence of graphs with distinct Grundy values.

Unboundedness of Grundy values

Theorem

The Grundy values for $\operatorname{W\!AK}$ are unbounded.

Unboundedness of Grundy values

Theorem

The Grundy values for WAK are unbounded.

Corollary

The Grundy values for ARC-KAYLES are unbounded. The Grundy values for NODE-KAYLES are unbounded.

Conclusion

Results

- \blacktriangleright Introduction of WAK, links with the rooks game
- Outcome of WAK on trees of depth at most 2
- Unboundedness of Grundy values

Conclusion

Results

- \blacktriangleright Introduction of WAK, links with the rooks game
- Outcome of WAK on trees of depth at most 2
- Unboundedness of Grundy values

Perspectives

- Solving more complex graphs and graphs for the rooks game
- Studying the complexity of WAK

Conclusion

Results

- \blacktriangleright Introduction of WAK, links with the rooks game
- Outcome of WAK on trees of depth at most 2
- Unboundedness of Grundy values

Perspectives

- Solving more complex graphs and graphs for the rooks game
- Studying the complexity of WAK

