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Combinatorial Games

Definition

1. Two-player games
2. No chance
3. Perfect information
4. Finite games, no draw
5. The last move alone determines the winner
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Combinatorial Games

Relaxations
1. Two-player games → Multiplayer Theory
2. No chance → Economical Games
3. Perfect information → Economical Games
4. Finite games, no draw → Loopy Games
5. The last move alone determines the winner → Scoring Games,

several graph games (coloring game, domination game, . . . )

→ We will talk about pure Combinatorial Games.
Note: Both players play perfectly!
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Let’s play!
Cram: The players place dominos on a grid. The player who plays

the last domino wins.

⇒ Second player wins.⇒ First player wins.
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Definitions

Impartial and partizan
A game is impartial ⇔ Both players have the same moves.
Otherwise, it is partizan.

→ We will study impartial games

Outcome
A game is N ⇔ The first player has a winning strategy.
Otherwise, it is P.

Problematics of Combinatorial Games
1. Is a given game N or P?
2. What is the winning strategy?
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An inefficient algorithm: the game graph

... plus the symmetries!
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An inefficient algorithm: the game graph

I Complete and finite

I ... but exponential-time!

⇒ A more efficient method to study games
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Nim

I Studied in 1901 by Charles Bouton
I Played on heaps of counters
I Players remove counters from one heap
I Whoever takes the last counter(s) wins

⇒ Here, the first player won
⇒ Is there a strategy?
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Solving Nim

Theorem
Let (a1, . . . , an) be a Nim-position.
It is P ⇔ a1 ⊕ . . .⊕ an = 0.
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Proof (by induction)

I If a1 ⊕ . . .⊕ an 6= 0, then move to such a position.

I Otherwise, then no move leaves such a position.
I When two heaps are left, the result is trivial.
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Back to Cram: summing games

Sum of games
On G + H, the players play either on G or on H. When G (resp.
H) is over, they play on H (resp. G).
The player who plays the last move wins.

+ ≡

Why summing games?
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Summing a P game

Theorem

If G is P, then G + H has the same outcome than H.

Proof by induction
I If H is P:

G + H

G ′ + H

G + H ′

G ′′ + H

G + H ′′

P + P ⇒ P

P + P ⇒ P
by induction hyp.

I If H is N :

G + H G + H ′ P + P ⇒ P
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Summing N games

+ ⇒ P

+ ⇒ N

⇒ We need to define equivalence classes for games
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Grundy values
Equivalence of games
G ≡ H ⇔ G + H is P.

Grundy value
Mapping the equivalence classes to nonnegative integers.

I G(G)= 0⇔ G is P.

I G(G) is the mex of the Grundy values of its options.

G = 0G = 1

G = 0

G = 1

G = 2
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Sprague-Grundy Theorem

Theorem (Sprague 1935, Grundy 1939)
G(G + H) = G(G)⊕ G(H)

+

1 ⊕ 1 = 0

+

1 ⊕ 2 = 3

Interpretation
Every impartial game is equivalent to a Nim heap.
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The Rooks game: motivation

The queens problem (Bezzel, 1848)
How many queens can one place on a chessboard without them
attacking each other?

The queens game (Noon and Van Brummelen, 2006)
Two players alternate placing queens on a chessboard without
attacking an already placed queen. The player who places the last
queen wins.
→ Solved on odd square chessboards. ⇒ N by symmetry
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The Rooks game

The rooks game
Two players alternate placing rooks on a chessboard without
attacking an already placed rook. The player who places the last
rook wins.

On rectangular chessboards: parity.

The rooks game on a holed chessboard
Same than the rooks game, but the chessboard has holes. Rooks
cannot attack through holes.
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A model for the rooks game: Weighted Arc-Kayles

Weighted Arc-Kayles (or
WAK)

I Played on a weighted graph
G = (V , E , ω) with
ω : V → N.

I The players alternate selecting
edges.

I The weight of both endpoints
is decreased by 1.

I Vertices with weight zero are
removed.

I When there are no edges left,
the game ends.

m n

m − 1 n − 1
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Example

3 6 1

2 5 1

3 5 1

3 5 0 3 5
≡
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WAK is the rooks game

V1

V2

V3

V4

V5

V6

V7

V8

V1
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H2
H3
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H6
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H7

H2

H1 H3 H4 H5 H6 H7

V1

V2

V3 V4

V5

V6

V7V8

H7

V1
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First results on WAK

a b
a

b G = min(a, b) mod 2

a
> a

a G = a mod 2

⇒ a b
min(a, b)

≡
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Reduction Lemmas

Twin vertices lemma
If two vertices are exact false twins (including loop edges),

then
they can be fused together.

v1 v2

u1

u2

u3
u4 u5

v

u1

u2

u3
u4 u5

ω(v) = ω(v1) + ω(v2)
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Reduction Lemmas

Heavy vertex lemma
If a vertex without loop has a weight greater than the sum of its
neighbour’s weights,

then it can be removed and loops added to its
neighbours.

v u1

u2

u3

u4 u5

u1

u2

u3

u4 u5

if ω(v) >
∑

ω(vi )
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Reduction Lemmas

Useless vertex lemma
If all the neighbours of a vertex without loop have a loop,

then it
can be removed.
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Canonical form

a b
min(a, b)

≡

⇒ Application of the Heavy vertex lemma

Canonical form
A graph is canonical if it has no false twin, no heavy vertex and no
useless vertex.

Proposition
If G is a graph and H its canonical form after application of the
reduction lemmas, then G(G) = G(H).
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What about unweighted Arc-Kayles?

Arc-Kayles (Schaefer, 1978)
I This game is played on a

graph G = (V , E ).
I The players alternate selecting

edges.
I Its endpoints are deleted.
I When there are no edges left,

the game ends.

⇒ Arc-Kayles is WAK with ω(u) = 1 for all vertex u
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What about unweighted Arc-Kayles?

Arc-Kayles (Schaefer, 1978)
I This game is played on a

graph G = (V , E ).
I The players alternate selecting

edges.
I Its endpoints are deleted.
I When there are no edges left,

the game ends.

⇒ Arc-Kayles is WAK with ω(u) = 1 for all vertex u
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Arc-Kayles: a history

I 1976: introduction (Schaeffer)
I 1956: solved on paths (Guy and Smith)
I 2014: FPT complexity (Lampis and Mitsou)
I 2016: solved on cycles, wheels and stars with 3 paths

(Huggan and Stevens)

→ Links with many other games (Cram, octal games . . . )
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From WAK to Arc-Kayles

Weighted
Arc-Kayles

2 3 1

1 2 1

Arc-Kayles
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A chessboard with a hole in the corner
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P ⇔ a and b even
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Trees of depth at most 2
Theorem
Let xi > yi

•
•
•

x1

y1

x2
y2

xn
yn

b a

∑
i yi

∑
i xi b a

∑
i

xi ≥ b +
∑

i
yi

∑
i

xi < b +
∑

i
yi

+∑
i yi b a a +

∑
i xi

by the heavy vertex lemma by a technical lemma
or b is heavy and Y useless

Same outcome, not equivalence!
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Trees of depth at most 2

Theorem
There is a polynomial-time algorithm computing the outcome of a
tree of depth at most 2.

b

x1 xn• • • a1 • • • amw1 w`•••

y1,1 y1,n1 yn,1 yn,nn c1,1 c1,m1 cm,1 cm,mm
••• ••• ••• •••

w1 w`•••

y1,1 y1,n1 y1,nn yn,nn c1,1 c1,m1 cm,1 cm,mm
••• ••• ••• •••

∑
wi

∑
y1,i

∑
yn,i

∑
c1,i

∑
cm,i

∑
wi

∑
y1,i

∑
yn,i

∑
c1,i

∑
cm,i

xj >
∑

yj,i
∑

wi > 0 aj <
∑

yc,iaj <
∑

yc,i

∑
c1,i

∑
cm,i

a1 • • • am∑
ai

∑
ai

00

→ Now we can apply the previous theorem and find the outcome
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Trees of depth at most 2: implication

n1 n2

h1 h2

m

w

≡

h1 n1

h2 n2

m w

0

→ Tree of depth 2
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Other chessboards?

n1

n2

h1 h2

m1

m2

w1

w2

≡

m1

m2n1

n2

w1

w2h1

h2

→ Hard...

32/36



Other chessboards?

n1

n2

h1 h2

m1

m2

w1

w2

≡

m1

m2n1

n2

w1

w2h1

h2

→ Hard...

32/36



Other chessboards?

n1

n2

h1 h2

m1

m2

w1

w2

≡

m1

m2n1

n2

w1

w2h1

h2

→ Hard...

32/36



Are the Grundy values bounded?

Theorem
The Grundy values for WAK are unbounded.

Proof (by induction)
Construct a sequence G1, G2, . . . such that:

I G(Gi ) 6= G(Gj) for j < i
I A winning move is by removing a certain vertex ui
I Every vertex has weight 1

u1G1 =
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Unboundedness of Grundy values: building Gn+1

I G(Gn) 6= G(Gj) for j < n + 1
I A winning move is by removing a certain vertex un+1
I Every vertex has weight 1

un+1

u1

G1

. . .

un

GnG ′
n

u1

G1

. . . un

Gn

∀i ,G(G ′
i ) = 0 by induction hypothesis, this graph has G = G(Gi ).
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⇒ Infinite sequence of graphs with distinct Grundy values.
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Unboundedness of Grundy values

Theorem
The Grundy values for WAK are unbounded.

Corollary
The Grundy values for Arc-Kayles are unbounded.
The Grundy values for Node-Kayles are unbounded.
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I Solving more complex graphs and graphs for the rooks game
I Studying the complexity of WAK
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